main

Cloud Computing

Eliminating Excessive Permissions

June 11, 2019 — by Eyal Arazi1

excessivepermissionsblog-960x581.jpg

Excessive permissions are the #1 threat to workloads hosted on the public cloud. As organizations migrate their computing resources to public cloud environments, they lose visibility and control over their assets. In order to accelerate the speed of business, extensive permissions are frequently granted to users who shouldn’t have them, which creates a major security risk should any of these users ever become compromised by hackers.

Watch the video below to learn more about the importance of eliminating excessive permissions.

Read “The Trust Factor: Cybersecurity’s Role in Sustaining Business Momentum” to learn more.

Download Now

Cloud Security

Managing Security Risks in the Cloud

May 8, 2019 — by Daniel Smith3

cloudrisk-960x640.jpg

Often, I find that only a handful of organizations have a complete understanding of where they stand in today’s threat landscape. That’s a problem. If your organization does not have the ability to identify its assets, threats, and vulnerabilities accurately, you’re going to have a bad time.

A lack of visibility prevents both IT and security administrators from accurately determining their actual exposure and limits their ability to address their most significant risk on premise. However, moving computing workloads to a publicly hosted cloud service exposes organizations to new risk by losing direct physical control over their workloads and relinquishing many aspects of security through the shared responsibility model.

Cloud-y With a Chance of Risk

Don’t get me wrong; cloud environments make it very easy for companies to quickly scale by allowing them to spin up new resources for their user base instantly. While this helps organizations decrease their overall time to market and streamline business process, it also makes it very difficult to track user permission and manage resources.

[You may also like: Excessive Permissions are Your #1 Cloud Threat]

As many companies have discovered over the years, migrating workloads to a cloud-native solution present new challenges when it comes to risk and threats in a native cloud environment.

Traditionally, computing workloads resided within the organization’s data centers, where they were protected against insider threats. Application protection was focused primarily on perimeter protections via mechanisms such as firewalls, intrusion prevention/detection systems (IPS/IDS), web application firewall (WAF) and distributed denial-of-service (DDoS) protection, secure web gateways (SWGs), etc.

However, moving workloads to the cloud has presented new risks for organizations. Typically, public clouds provide only basic protections and are mainly focused on securing their overall computing environments, leaving individual and organizations workloads vulnerable. Because of this, deployed cloud environment are at risk of not only account compromises and data breaches, but also resource exploitation due to misconfigurations, lack of visibility or user error.

[You may also like: Ensuring Data Privacy in Public Clouds]

The Details

The typical attack profile includes:

  • Spear phishing employees
  • Compromised credentials
  • Misconfigurations and excessive permissions
  • Privilege escalation
  • Data exfiltration

The complexity and growing risk of cloud environments are placing more responsibility for writing and testing secure apps on developers as well. While most are not cloud-oriented security experts, there are many things we can do to help them and contribute to a better security posture.

[You may also like: Anatomy of a Cloud-Native Data Breach]

Recent examples of attacks include:

  • A Tesla developer uploaded code to GitHub which contained plain-text AWS API keys. As a result, hackers were able to compromise Tesla’s AWS account and use Tesla’s resource for crypto-mining.
  • js published an npm code package in their code release containing access keys to their S3 storage buckets.

Mitigating Risk

The good news is that most of these attacks can be prevented by addressing software vulnerabilities, finding misconfigurations and deploying identity access management through a workload protection service.

With this in mind, your cloud workload protection solution should:

[You may also like: Embarking on a Cloud Journey: Expect More from Your Load Balancer]

There are many blind spots involved in today’s large-scale cloud environments. The right cloud workload protection reduces the attack surface, detects data theft activity and provides comprehensive protection in a cloud-native solution.

As the trend around cybercriminals targeting operational technologies continues, it’s critical to reduce organizational risk by rigorously enforcing protection policies, detecting malicious activity and improving response capabilities while providing insurance to the developers.

Read “The Trust Factor: Cybersecurity’s Role in Sustaining Business Momentum” to learn more.

Download Now

Cloud ComputingCloud Security

Excessive Permissions are Your #1 Cloud Threat

February 20, 2019 — by Eyal Arazi0

AdobeStock_171211548-960x640.jpg

Migrating workloads to public cloud environment opens up organizations to a slate of new, cloud-native attack vectors which did not exist in the world of premise-based data centers.

In this new environment, workload security is defined by which users have access to your cloud environment, and what permissions they have. As a result, protecting against excessive permissions, and quickly responding when those permissions are abused, becomes the #1 priority for security administrators.

The Old Insider is the New Outsider

Traditionally, computing workloads resided within the organization’s data centers, where they were protected against insider threats. Application protection was focused primarily on perimeter protection, through mechanisms such as firewalls, IPS/IDS, WAF and DDoS protection, secure gateways, etc.

However, moving workloads to the cloud has led to organizations (and IT administrators) to lose direct physical control over their workloads, and relinquish many aspects of security through the Shared Responsibility Model. As a result, the insider of the old, premise-based world is suddenly an outsider in the new world of publicly hosted cloud workloads.

[You may also like: Ensuring Data Privacy in Public Clouds]

IT administrators and hackers now have identical access to publicly-hosted workloads, using standard connection methods, protocols, and public APIs. As a result, the whole world becomes your insider threat.

Workload security, therefore, is defined by the people who can access those workloads, and the permissions they have.

Your Permissions = Your Attack Surface

One of the primary reasons for migrating to the cloud is speeding up time-to-market and business processes. As a result, cloud environments make it very easy to spin up new resources and grant wide-ranging permissions, and very difficult to keep track of who has them, and what permissions they actually use.

All too frequently, there is a gap between granted permissions and used permissions. In other words, many users have too many permissions, which they never use. Such permissions are frequently exploited by hackers, who take advantage of unnecessary permissions for malicious purposes.

As a result, cloud workloads are vulnerable to data breaches (i.e., theft of data from cloud accounts), service violation (i.e., completely taking over cloud resources), and resource exploitation (such as cryptomining). Such promiscuous permissions are frequently mis-characterized as ‘misconfigurations’, but are actually the result of permission misuse or abuse by people who shouldn’t have them.

[You may also like: Protecting Applications in a Serverless Architecture]

Therefore, protecting against those promiscuous permissions becomes the #1 priority for protecting publicly-hosted cloud workloads.

Traditional Protections Provide Piecemeal Solutions

The problem, however, is that existing solutions provide incomplete protection against the threat of excessive permissions.

  • The built-in mechanisms of public clouds usually provide fairly basic protection, and mostly focused security on the overall computing environment, they are blind to activity within individual workloads. Moreover, since many companies run multi-cloud and hybrid-cloud environment, the built-in protections offered by cloud vendors will not protect assets outside of their network.
  • Compliance and governance tools usually use static lists of best practices to analyze permissions usage. However, they will not detect (and alert to) excessive permissions, and are usually blind to activity within workloads themselves.
  • Agent-based solutions require deploying (and managing) agents on cloud-based servers, and will protect only servers on which they are installed. However, they are blind to overall cloud user activity and account context, and usually cannot protect non-server resources such as services, containers, serverless functions, etc.
  • Cloud Access Security Brokers (CASB) tools focus on protecting software-as-a-service (SaaS) applications, but do not protect infrastructure-as-a-service (IaaS) or platform-as-a-service (PaaS) environments.

[You may also like: The Hybrid Cloud Habit You Need to Break]

A New Approach for Protection

Modern protection of publicly-hosted cloud environments requires a new approach.

  • Assume your credentials are compromised: Hackers acquire stolen credentials in a plethora of ways, and even the largest companies are not immune to credential theft, phishing, accidental exposure, or other threats. Therefore, defenses cannot rely solely on protection of passwords and credentials.
  • Detect excessive permissions: Since excessive permissions are so frequently exploited for malicious purposes, identifying and alerting against such permissions becomes paramount. This cannot be done just by measuring against static lists of best practices, but must be based on analyzing the gap between the permissions a user has defined, and the permission they actually use.
  • Harden security posture: The best way of stopping a data breach is preventing it before it ever occurs. Therefore, hardening your cloud security posture and eliminating excessive permissions and misconfigurations guarantees that even if a user’s credentials become compromised, then attackers will not be able to do much with those permissions.
  • Look for anomalous activities: A data breach is not one things going wrong, but a whole list of things going wrong. Most data breaches follow a typical progression, which can be detected and stopped in time – if you know what you’re looking for. Monitoring for suspicious activity in your cloud account (for example, such as anomalous usage of permissions) will help identify malicious activity in time and stop it before user data is exposed.
  • Automate response: Time is money, and even more so when it comes to preventing exposure of sensitive user data. Automated response mechanisms allow you to respond faster to security incidents, and block-off attacks within seconds of detection.

[You may also like: Automating Cyber-Defense]

Radware’s Cloud Workload Protection Service

Radware is extending its line of cloud-based security services to provide an agentless, cloud-native solution for comprehensive protection of workloads hosted on AWS. Radware’s solution protects both the overall security posture of your AWS cloud account, as well as individual cloud workloads, protecting against cloud-native attack vectors.

Radware’s solutions addresses the core-problem of cloud-native excessive permissions by analyzing the gap between granted and used permissions, and providing smart hardening recommendations to harden configurations. Radware uses advanced machine-learning algorithms to identify malicious activities within your cloud account, as well as automated response mechanisms to automatically block such attacks. This helps customers prevent data theft, protect sensitive customer data, and meet compliance requirements.

Read “The Trust Factor: Cybersecurity’s Role in Sustaining Business Momentum” to learn more.

Download Now