main

Application SecurityAttack Types & VectorsBotnetsSecurity

Are Connected Cows a Hacker’s Dream?

April 3, 2019 — by Mike O'Malley0

connected_cows-960x639.jpg

Humans aren’t the only ones consumed with connected devices these days. Cows have joined our ranks.

Believe it or not, farmers are increasingly relying on IoT devices to keep their cattle connected. No, not so that they can moo-nitor (see what I did there?) Instagram, but to improve efficiency and productivity. For example, in the case of dairy farms, robots feed, milk and monitor cows’ health, collecting data along the way that help farmers adjust techniques and processes to increase milk production, and thereby profitability.

The implications are massive. As the Financial Times pointed out, “Creating a system where a cow’s birth, life, produce and death are not only controlled but entirely predictable could have a dramatic impact on the efficiency of the dairy industry.”

From Dairy Farm to Data Center

So, how do connected cows factor into cybersecurity? By the simple fact that the IoT devices tasked with milking, feeding and monitoring them are turning dairy farms into data centers – which has major security implications. Because let’s face it, farmers know cows, not cybersecurity.

Indeed, the data collected are stored in data centers and/or a cloud environment, which opens farmers up to potentially costly cyberattacks. Think about it: The average U.S. dairy farm is a $1 million operation, and the average cow produces $4,000 in revenue per year. That’s a lot at stake—roughly $19,000 per week, given the average dairy farm’s herd—if a farm is struck by a ransomware attack.

[You may also like: IoT Expands the Botnet Universe]

It would literally be better for an individual farm to pay a weekly $2,850 ransom to keep the IoT network up. And if hackers were sophisticated enough to launch an industry-wide attack, the dairy industry would be better off paying $46 million per week in ransom rather than lose revenue.

5G Cows

Admittedly, connected cows aren’t new; IoT devices have been assisting farmers for several years now. And it’s a booming business. Per the FT, “Investment in precision ‘agtech’ systems reached $3.2bn globally in 2016 (including $363m in farm management and sensor technology)…and is set to grow further as dairy farms become a test bed for the wider IoT strategy of big technology companies.”

[You may also like: Securing the Customer Experience for 5G and IoT]

But what is new is the rollout of 5G networks, which promise faster speeds, low latency and increased flexibility—seemingly ideal for managing IoT devices. But, as we’ve previously discussed, with new benefits come new risks. As network architectures evolve to support 5G, security vulnerabilities will abound if cybersecurity isn’t prioritized and integrated into a 5G deployment from the get-go.

In the new world of 5G, cyberattacks can become much more potent, as a single hacker can easily multiply into an army through botnet deployment. Indeed, 5G opens the door to a complex world of interconnected devices that hackers will be able to exploit via a single point of access in a cloud application to quickly expand an attack radius to other connected devices and applications. Just imagine the impact of a botnet deployment on the dairy industry.

[You may also like: IoT, 5G Networks and Cybersecurity: A New Atmosphere for Mobile Network Attacks]

I don’t know about you, but I like my milk and cheeses. Here’s to hoping dairy farmers turn to the experts to properly manage their security before the industry is hit with devastating cyberattacks.

2018 Mobile Carrier Ebook

Read “Creating a Secure Climate for your Customers” today.

Download Now

Application SecuritySecurityWeb Application Firewall

Credential Stuffing Campaign Targets Financial Services

October 23, 2018 — by Daniel Smith4

credential_financial_hacking-960x677.jpg

Over the last few weeks, Radware has been tracking a significant Credential Stuffing Campaign targeting the financial industry in the United States and Europe.

Background

Credential Stuffing is an emerging threat in 2018 that continues to accelerate as more breaches occur. Today, a breach doesn’t just impact the compromised organization and its users, but it also affects every other website that the users may use.

Additionally, resetting passwords for a compromised application will only solve the problem locally while criminals are still able to leverage those credentials externally against other applications due to poor user credential hygiene.

Credential Stuffing is a subset of brute force attacks but is different from Credential Cracking. Credential Stuffing campaigns do not involve the process of brute forcing password combinations. Credential Stuffing campaigns leverage leaked username and passwords in an automated fashion against numerous websites in an attempt to take over users accounts due to credential reuse.

Criminals, like researchers, collect and data mine leaks databases and breached accounts for several reasons. Typically cybercriminals will keep this information for future targeted attacks, sell it for profit or exploit it in fraudulent ways.

The motivations behind the current campaign that Radware is seeing are strictly fraud related. Criminals are using credentials from prior data breaches in an attempt to gain access and take over user’s bank accounts. These attackers have been seen targeting financial organizations in both the United States and Europe. When significant breaches occur, the compromised email addresses and passwords are quickly leveraged by cybercriminals. Armed with tens of millions of credentials from a recently breached website, attackers will use these credentials along with scripts and proxies to distribute their attack in an automated fashion against the financial institution in an attempt to take over banking accounts. These login attempts can happen in such volumes that they resemble a Distributed Denial of Service (DDoS) attack.

Attack Methods

Credential Stuffing is one of the most commonly used attack vectors by cybercriminals today. It’s an automated web injection attack where criminals use a list of breached credentials in an attempt to gain access and take over accounts across different platforms due to poor credential hygiene. Attackers will route their login request through proxy servers to avoid blacklisting their IP address.

Attackers automate the logins of millions of previously discovered credentials with automation tools like cURL and PhantomJS or tools designed specifically for the attack like Sentry MBA and SNIPR.

This threat is dangerous to both the consumer and organizations due to the ripple effect caused by data breaches. When a company is breached, those credentials compromised will either be used by the attacker or sold to other cybercriminals. Once credentials reach its final destination, a for-profit criminal will use that data, or credentials obtain from a leak site, in an attempt to take over user accounts on multiple websites like social media, banking, and marketplaces. In addition to the threat of fraud and identity theft to the consumer, organizations have to mitigate credential stuffing campaigns that generate high volumes or login requests, eating up resources and bandwidth in the process.

Credential Cracking

Credential Cracking attacks are an automated web attack where criminals attempt to crack users password or PIN numbers by processing through all possible combines of characters in sequence. These attacks are only possible when applications do not have a lockout policy for failed login attempts.

Attackers will use a list of common words or recently leaked passwords in an automated fashion in an attempt to take over a specific account. Software for this attack will attempt to crack the user’s password by mutating, brute forcing, values until the attacker is successfully authenticated.

Targets

In recent campaigns, Radware has seen financial institutions targeted in both the United States and Europe by Credential Stuffing campaigns.

Crimeware

Sentry MBA is one of the most popular Credential Stuffing toolkits used by cybercriminals today. This tool is hosted on the Sentry MBA crackers forum. The tool simplifies and automates the process of checking credentials across multiple websites and allows the attackers to configure a proxy list so they can anonymize their login requests.

SNIPR – Credential Stuffing Toolkit

SNIPR is a popular Credential Stuffing toolkit used by cybercriminals and is found hosted on the SNIPR crackers forums. SNIPR comes with over 100 config files preloaded and the ability to upload personal config files to the public repository.

Reasons for Concern

Recent breaches over the last few years have exposed hundreds of millions of user credentials. One of the main reasons for concern of a Credential Stuffing campaign is due to the impact that it has on the users. Users who reuse credentials across multiple websites are exposing themselves to an increased risk of fraud and identity theft.

The second concern is for organizations who have to mitigate high volumes of fraudulent login attempts that can saturate a network. This saturation can be a cause for concern, as it will appear to be a DDoS attack, originating from random IP addresses coming from a variety of sources, including behind proxies. These requests will look like legitimate attempts since the attacker is not running a brute force attack. If the user: pass for that account does not exist or authenticate on the targeted application the program will move on to the next set of credentials.

Mitigation

In order to defend against a Credential Stuffing campaign, organizations need to deploy a WAF that can properly fingerprint and identify malicious bot traffic as well as automated login attacks directed at your web application. Radware’s AppWall addresses the multiples challenges faced by Credential Stuffing campaigns by introducing additional layers of mitigation including activity tracking and source blocking.

Radware’s AppWall is a Web Application Firewall (WAF) capable of securing Web applications as well as enabling PCI compliance by mitigating web application security threats and vulnerabilities. Radware’s WAF prevents data from leaking or being manipulated which is critically important in regard to sensitive corporate data and/or information about its customers.

The AppWall security filter also detects such attempts to hack into the system by checking the replies sent from the Web server for Bad/OK replies in a specific timeframe. In the event of a Brute Force attack, the number of Bad replies from the Web server (due to a bad username, incorrect password, etc.) triggers the BruteForce security filter to monitor and take action against that specific attacker. This blocking method prevents a hacker from using automated tools to carry out an attack against Web application login page.

In addition to these steps, network operators should apply two-factor authentication where eligible and monitor dump credentials for potential leaks or threats.

Effective Web Application Security Essentials

  • Full OWASP Top-10 coverage against defacements, injections, etc.
  • Low false positive rate – using negative and positive security models for maximum accuracy
  • Auto policy generation capabilities for the widest coverage with the lowest operational effort
  • Bot protection and device fingerprinting capabilities to overcome dynamic IP attacks and achieve improved bot detection and blocking
  • Securing APIs by filtering paths, understanding XML and JSON schemas for enforcement, and activity tracking mechanisms to trace bots and guard internal resources
  • Flexible deployment options – on-premise, out-of-path, virtual or cloud-based

Read “Radware’s 2018 Web Application Security Report” to learn more.

Download Now

Application SecurityAttack MitigationSecurityWeb Application Firewall

Are Your Applications Secure?

October 3, 2018 — by Ben Zilberman7

WAF_REPORT_BLOG_Cover_img-960x715.jpg

Executives express mixed feelings and a surprisingly high level of confidence in Radware’s 2018 Web Application Security Report. 

As we close out a year of headline-grabbing data breaches (British Airways, Under Armor, Panera Bread), the introduction of GDPR and the emergence of new application development architectures and frameworks, Radware examined the state of application security in its latest report. This global survey among executives and IT professionals yielded insights about threats, concerns and application security strategies.

The common trend among a variety of application security challenges including data breaches, bot management, DDoS mitigation, API security and DevSecOps, was the high level of confidence reported by those surveyed. 90% of all respondents across regions reported confidence that their security model is effective at mitigating web application attacks.

Attacks against applications are at a record high and sensitive data is shared more than ever. So how can execs and IT pros have such confidence in the security of their applications?

To get a better understanding, we researched the current threat landscape and application protection strategies organizations currently take. Contradicting evidence stood out immediately:

  • 90% suffered attacks against their applications
  • One in three shared sensitive data with third parties
  • 33% allowed third parties to create/modify/delete data via APIs
  • 67% believed a hacker can penetrate their network
  • 89% saw web-scraping as a significant threat to their IP
  • 83% run bug bounty programs to find vulnerabilities they miss

There were quite a few threats to application services that were not properly addressed, challenging traditional security approaches. In parallel, the adoption of emerging frameworks and architectures, which rely on numerous integrations with multiple services, adds more complexity and increases the attack surface.

[You may also like: Threats on APIs and Mobile Applications]

Current Threat Landscape

Last November, OWASP released a new list of top 10 vulnerabilities in web applications. Hackers continue to use injections, XSS, and a few old techniques such as CSRF, RFI/LFI and session hijacking to exploit these vulnerabilities and gain unauthorized access to sensitive information. Protection is becoming more complex as attacks come through trusted sources such as a CDN, encrypted traffic, or APIs of systems and services we integrate with. Bots behave like real users and bypass challenges such as CAPTCHA, IP-based detection and others, making it even harder to secure and optimize the user experience.

[You might also like: WAFs Should Do A  Lot More Against Current Threats Than Covering OWASP Top 10]

Web application security solutions must be smarter and address a broad spectrum of vulnerability exploitation scenarios. On top of protecting the application from these common vulnerabilities, it has to protect APIs and mitigate DoS attacks, manage bot traffic and make a distinction between legitimate bots (search engines for instance) and bad ones like botnets, web-scrapers and more.

DDoS Attacks

63% suffered a denial of service attack against their application. DoS attacks render applications inoperable by exhausting the application resources. Buffer overflow and HTTP floods were the most common types of DoS attacks, and this form of attack is more common in APAC. 36% find HTTP/Layer-7 DDoS as the most difficult attack to mitigate. Half of the organizations take rate-based approaches (such as limiting the number of request from a certain source or simply buying a rate-based DDoS protection solution) which are ineffective once the threshold is exceeded and real users can’t connect.

API Attacks

APIs simplify the architecture and delivery of application services and make digital interactions possible. Unfortunately, they also introduce a wide range of risks and vulnerabilities as a backdoor for hackers to break into networks. Through APIs, data is exchanged in HTTP where both parties receive, process and share information. A third party is theoretically able to insert, modify, delete and retrieve content from applications. This is nothing but an invitation to attack:

  • 62% of respondents did not encrypt data sent via API
  • 70% of respondents did not require authentication
  • 33% allowed third parties to perform actions (GET/ POST / PUT/ DELETE)

Attacks against APIs:

[You may also like: How to Prevent Real-Time API Abuse]

  • 39% Access violations
  • 32% Brute-force
  • 29% Irregular JSON/XML expressions
  • 38% Protocol attacks
  • 31% Denial of service
  • 29% Injections

Bot Attacks

The amount of both good and bad bot traffic is growing. Organizations are forced to increase network capacity and need to be able to precisely tell a friend from a foe so both customer experience and security are maintained. Surprisingly, 98% claimed they can make such a distinction. However, a similar amount sees web-scraping as a significant threat. 87% were impacted by such an attack over the past 12 months, despite a variety of methods companies use to overcome the challenge – CAPTCHA, in-session termination, IP-based detection or even buying a dedicated anti-bot solution.

Impact of Web-scraping:

  • 50% gathered pricing information
  • 43% copied website
  • 42% theft of intellectual property
  • 37% inventory queued/being held by bots
  • 34% inventory held
  • 26% inventory bought out

[You may also like: 5 Simple Bot Management Techniques]

Data Breaches

Multinational organizations keep close tabs on what kinds of data they collect and share. However, almost every other business (46%) reports having suffered a breach. On average an organization suffers 16.5 breach attempts every year. Most (85%) take between hours and days to discover. Data breaches are the most difficult attack to detect, as well as mitigate, in the eyes of our survey respondents.

How do organizations discover data breaches?

  • 69% Anomaly detection tools/SIEM
  • 51% Darknet monitoring service
  • 45% Information was leaked publicly
  • 27% Ransom demand

IMPACT OF ATTACKS

Negative consequences such as loss of reputation, customer compensation, legal action (more common in EMEA), churn (more common in APAC), stock price drops (more common in AMER) and executives who lose their jobs are quick to follow a successful attack, while the process of repairing the damage of a company’s reputation is long and not always successful. About half admitted having encountered such consequences.

Securing Emerging Application Development Frameworks

The rapidly growing amount of applications and their distribution across multiple environments requires adjustments that lead to variations once a change to the application is needed. It is nearly impossible to deploy and maintain the same security policy efficiently across all environments. Our research shows that ~60% of all applications undergo changes on a weekly basis. How can the security team keep up?

While 93% of organizations use a web application firewall (WAF), only three in ten use a WAF that combines both positive and negative security models for effective application protection.

Technologies Used By DevOps

  • 63% – DevOps and Automation Tools
  • 48% – Containers (3 in 5 use Orchestration)
  • 44% – Serverless / FaaS
  • 37% – Microservers

Among the respondents that used micro-services, one-half rated data protection as the biggest challenge, followed by availability assurance, policy enforcement, authentication, and visibility.

Summary

Is there a notion that organizations are confident? Yes. Is that a false sense of security? Yes. Attacks are constantly evolving and security measures are not foolproof. Having application security tools and processes in place may provide a sense of control but they are likely to be breached or bypassed sooner or later. Another question we are left with is whether senior management is fully aware of the day to day incidents. Rightfully so, they look to their internal teams tasked with application security to manage the issue, but there seems to be a disconnect between their perceptions of the effectiveness of their organizations’ application security strategies and the actual exposure to risk.

Read “Radware’s 2018 Web Application Security Report” to learn more.

Download Now

BotnetsDDoS AttacksSecurity

Cities Paying Ransom: What Does It Mean for Taxpayers?

September 25, 2018 — by David Hobbs1

cities_paying_ransom_higher_taxes_blog-960x641.jpg

On September 1, Ontario’s Municipal Offices experienced a cyberattack that left their computers inoperable when Malware entered its systems and rendered its servers useless. The municipality was faced with paying a ransom to the attackers or face the consequences of being locked out of its systems. Per the advice of a consultant, the city paid an undisclosed amount of ransom to its attackers.

Only a couple months earlier, the Town of Wasaga Beach in Ontario, faced the same issue and paid one bitcoin per server.  It spent 11 Bitcoins, valued at the time at $144,000, to regain control of 11 servers. The town negotiated with the attackers to reduce the price to $35,000.  After paying the ransom, Wasaga Beach assessed the damages to its city at $250,000 for loss of productivity and reputation.

This scenario has become commonplace today.  Cities, municipalities, and government agencies have all experienced ransom attacks. But ultimately taxpayers are the ones that pay the bill for these cyberattacks.  The city of Atlanta projected $2.6M for ransomware recovery in May of 2018.  Atlanta chose not to pay the ransom, and instead allocated the funds to incident response.

Have these cities actually tested backup systems and disaster recovery within the last 2-3 months?  As public entities, we would ideally have full transparency and an understanding of the capabilities in place to protect public infrastructure.

Why have certain cites lacked transparency about the decision to pay attackers? Could the reasons for poor public disclosure be a lack of expertise and IT security spending, fear of public criticism, or actual weaknesses in their IT systems?

[You might also like: Defending Against the Mirai Botnet]

Should there be disclosure laws for public sectors concerning data breaches and malware events?

If a city is constrained with IT budgets preventing their IT department from making advances in cybersecurity protection, do its citizens get to vote on how IT is handled?  What if outsourcing IT to a managed services expert reduced costs (and headcount/jobs) while providing greater security? Would municipalities be better off if they could focus on delivering services to their citizens without having to worry about IT security?

Considering there aren’t a ton of checks and balances (and possibly budget), is this going to become the norm for hackers to target?

Private sector companies have been forced to take cybersecurity more seriously and according to some projections, will spend over $1 trillion on global digital security through 2021. Bank of America and J.P. Morgan Chase each spend around $500 million a year on cybersecurity.  Meanwhile, federal cybersecurity spending continues to lag, with some estimates suggesting it will reach a meager $22 billion by 2022.

Is the answer to the problem to start looking at better disclosure in IT spending? Should the public sector IT be outsourced to IT experts and moved to the cloud? Will the taxpayers perpetually be on the hook for poor IT security protection in the public sector?

There are hosted solution providers today that provide secure solutions for cities. Some cloud providers already have turnkey government solutions available for sale. Some of these platforms include city management, fare and tolls, police and intelligence, prison management, court management, video management, and safe city management. What if the taxpayers found that it cost less money and did a better job of security?  Would the voters be able to push public transparency and cost reduction through? How many more events like this will it take to move government IT into better hands?

Read the “IoT Attack Handbook – A Field Guide to Understanding IoT Attacks from the Mirai Botnet and its Modern Variants” to learn more.

Download Now

Application SecurityBotnetsSecurity

Don’t Let Your Data Seep Through The Cracks: Cybersecurity For the Smart Home

September 20, 2018 — by Anna Convery-Pelletier0

secure_customer_experience_smart_home_blog-960x610.jpg

Technology and wireless connectivity have forever changed households. While we don’t have the personal hovercrafts or jetpacks that we were promised as children, infinite connectivity has brought a whirlwind of “futuristic” benefits and luxuries few could have imagined even a decade ago. But more importantly, it has re-defined how the modern domicile needs to be managed.

Just as with an enterprise network, cybersecurity concerns also impact the home network. The onus is on us, the consumer, to take responsibility for home network security because device manufacturers have not and the risks associated with any data breach is hugely detrimental in the digital age we live in.

A home network is no longer just laptops, tablets, smartphones and printers. The explosion of the Internet of Things (IoT) has resulted in network connectivity to nearly everything. Everyday household items – appliances, cameras, routers, baby monitors, toys, televisions, thermostats, heating systems, etc. are now connected to each other and the internet. But with all this network connectivity comes risk. Why is that and more importantly, what should you do about it?

While many consumers naively assume that developers behind new network-connected equipment must be thinking long and hard about security, in truth they aren’t. To be first to market, design zero-setup equipment, and to deliver a more fulfilling consumer experience, security on many IoT devices is woefully inadequate and often times an afterthought. In addition, many of these network-connected devices leverage bare bone operating systems that have neither the capacity nor processing power for sophisticated anti-virus/malware tools.

It’s common knowledge that home security such as burglar alarms and even door locks are connected to the internet. What many consumers don’t realize is that this creates a huge exposure because the Wi-Fi serves as a new vulnerability to the house’s physical security system. While useful for providing remote access to your next-door neighbors when the dog needs to be let outside, tech-savvy thieves need only to hack the Wi-Fi to gain access to security controls, monitor resident’s daily habits and gain physical access to the house.

IoT devices connected to e-commerce sites is yet another. For example, a smart fridge integrated into somebody’s Amazon Fresh or FreshDirect account (and access to banking/credit card information) allows someone to purchase groceries or other kitchen necessities right from the refrigerator door. This seamless connectivity can be a dream come true for today’s digital consumer, but can also provide a virtual playground from which hackers can gain access to digital bounties via a single vulnerability.

Smart Homes Require Smart Planning and Smart Security

Smart homes are here and are only going to get smarter. In effect, they are no different from a small corporate network, and as such, they need similar levels of planning and security, especially when considering the growing trend of working from home. However, many consumers simply don’t have the desire to run them securely. Most importantly, consumers are not reviewing and taking the necessary security precautions like they do other aspects of their life.

[You might also like: Cybersecurity & The Customer Experience: The Perfect Combination]

Just like security must become the very fabric of a business, cybersecurity planning – the act of reviewing network-connected devices, where sensitive data is stored and potential security vulnerabilities – must become a critical component of the smart home.

On a yearly basis, my family sits down and does financial planning to review everything from vacations to unexpected expenses. We’ve now included conversations about security planning and ask ourselves some questions such as:

Have I taken an inventory of and actually know all of the various network-connected devices that are in my home? Have security updates been applied to home computers and network-connected devices? Do any outdated devices, such as routers, need to be changed out by the vendor? Are my passwords secure and have I backed up any critical/sensitive information?

These types of questions are what modern-day consumers must be asking, in addition to executing the multitude of security best practices regarding password management, device protection, and backing up sensitive information. Even traditional consumer-focused antivirus software providers now offer multi-layered security devices meant specifically to safeguard home networks, routers and IoT devices.

[You might also like: Personal Security Hygiene]

To truly enjoy the promise of the smart home, it needs to be protected from cyber intruders just as vicariously as it’s protected against physical intruders. Similar to the lessons that leading organizations and name brands have learned in recent years, the best combination is taking proactive measures and leveraging consumer security tools that are easy to implement, easy to operate and does not require a great deal of expertise. It’s time for consumers to become proactive and smarter about home cybersecurity.

Read “Consumer Sentiments: Cybersecurity, Personal Data and The Impact on Customer Loyalty” to learn more.

Download Now

SecurityService Provider

IoT, 5G Networks and Cybersecurity: Safeguarding 5G Networks with Automation and AI

September 18, 2018 — by Louis Scialabba2

iot-5g-networks-cybersecurity-blog-img-960x519.jpg

By 2020, Gartner says there will be 20.4 billion IoT devices. That rounds out to almost three devices per person on earth. As a result, IoT devices will show up in just about every aspect of daily life. While IoT devices promise benefits such as improved productivity, longevity and enjoyment, they also open a Pandora’s box of security issues for mobile service providers.

This flood of IoT devices, combined with the onset of 5G networks to support it, is creating an atmosphere ripe for mobile network attacks.  This threat landscape requires mobile service providers to alter their approach to network security or suffer dire consequences. The same old tools are no longer enough.

[You might also like: A New Atmosphere for Mobile Network Attacks]

Battle Increased Complexity with Automation

For years, security teams have struggled with the proliferation of data from dozens of security products, outpacing their ability to process it. This same problem applies to mobile service providers regarding the aforementioned issues surrounding 5G and IoT devices.

Security threats and anomalies within mobile network traffic are growing faster than security teams can detect and react to them. All the security threats we see now on enterprise networks are a harbinger of what’s to come on 5G networks. The introduction of 5G adds significant complexities to mobile networks that require next-generation security solutions.

Automation is key to better identification and mitigation of these threats for mobile service providers. Machine-learning based DDoS mitigation solutions enable real-time detection and mitigation of DDoS attacks. Through behavioral analysis, bad traffic can then be identified and automatically blocked before any damage is done.

[You might also like: The Rise of 5G Networks]

Automation Across the Security Architecture

For mobile service providers, automation must expand across all layers of the security architecture. First and foremost, the network must be leveraged as a sensor, a digital cyberattack tripwire. In 5G networks, network elements are distributed at the edge and virtualized. The network’s endpoints can be used as detection spots to send messages back to a centralized control plane (CCP).

The CCP serves as the brain of the network, compiling all the inputs from its telemetry feeds to deploy the best way to apply mitigation policies.

The myriad amount of CCP data can be put to work via Big Data. As 5G pushes network functions and data to the cloud, there’s an opportunity to use this information to better protect against attacks with the help of artificial intelligence (AI) and deep learning.

This is where the “big” in “big data” comes into play. Because 5G virtual devices live on the edge of the network in small appliances, there isn’t enough computing power available to identify evolving attack traffic from within. But by feeding traffic through an extra layer of protection at large data centers, it is possible to efficiently compile all the data to identify attacks.

Large data centers can be prohibitively expensive to house and maintain. Ideally, these data centers are housed and maintained by the mobile service provider’s DDoS mitigation vendor, which leverages its network of cloud-based scrubbing centers (and the massive volumes of threat intelligence it collects) to process this information and automatically feed it back to the mobile service provider.

A Game of Probability

In the end, IoT and 5G security will come down to being a game of probability, however, automation and AI stack the odds heavily in favor of mobile service providers.

The new network technology has the speed and capacity to enable AI with data from 50 billion connected devices. AI requires huge amounts of data to sift through and create neural networks where anomalies can be detected, with emphasis on good data. Bad or poisoned data will lead to biased models and false negatives. The more good data, the better the outcomes in this high-stakes game of probability.

As all this traffic is fed through the scrubbing centers at data centers around the world, AI can help inform security algorithms to detect protocol anomalies and flag issues. The near real-time process is complicated. Like an FBI watch list, a register of attack information goes to a mobile network’s control plane. The result is a threat intelligence feed that uses the power of machine learning to identify and prevent attacks.

The best place to populate AI and deep learning systems is from crowdsourcing and global communities where large numbers of enterprises and networks contribute data. Bad data will find its way in, but the good data will significantly outnumber the bad data to make deep learning possible.

Ultimately, the threats from botnets, web scraping, and IoT zombies is dynamic and increasingly complex. With 5G on the horizon, it’s critical that mobile service providers are proactive and make plans now to protect their networks against evolving security threats by turning to machine learning and AI.

2018 Mobile Carrier Ebook

Read “Creating a Secure Climate for your Customers” today.

Download Now

Attack Types & VectorsSecurity

Eliminating Single Points of Failure, Part 1

June 21, 2017 — by Louis Scialabba0

ddos-primer-part-1-960x788.jpg

The Risk DDoS Attacks Pose to Enterprises

The Role of the Firewall

A Firewall is a necessary first step in protecting an enterprise network by establishing a barrier between a trusted, secure internal network and another outside untrusted network such as the Internet. Firewalls have evolved considerably over the years, with the advent of next-generation firewalls to add application-aware filtering and intrusion detection capabilities and help customers improve their first line of defense. However, DDoS attacks are one vector where Firewalls are commonly the point of failure. In fact, Radware’s own research shows that the firewall is the cause of downtime during DDoS attacks roughly one-third of the time. The reason for this is the stateful nature of these devices, required to keep track of open sessions and transactions on the network. Maintaining session state requires use of session tables as well as other CPU resources that are finite and also responsible for other security features. Therefore under attack, the session table can be exhausted causing the firewall to fail.

DDoSHacksSecurity

Is Your Child Hacking Their School?

October 7, 2016 — by Radware0

Radware_Kid_Hacking_Comic_Strip-2-960x425.png

You might be surprised at who is behind the most recent cases of cyber-attacks on schools. Would you guess that in many cases, it’s the students themselves? Whether because they want to change their grades or attendance, because they feel it’s fun or they want to test the limits of how much they can get away with, it’s becoming a larger problem across the globe. Part of the issue is the ease in which kids can now access the Darknet, and the increasingly low costs to hire someone to hack the system for them.