main

Botnets

What You Need to Know About Botnets

June 12, 2019 — by Radware0

BotNet.jpeg

Botnets comprised of vulnerable IoT devices, combined with widely available DDoS-as-a-Service tools and anonymous payment mechanisms, have pushed denial-of-service attacks to record-breaking volumes.

A single attack can result in downtime, lost business and significant financial damages. Understanding the current tactics, techniques and procedures used by today’s cyber criminals is key to defending your network.

Watch this latest video from Radware’s Hacker’s Almanac to learn more about Botnets and how you can help protect your business from this type of sabotage.

Download “Hackers Almanac” to learn more.

Download Now

Application Security

4 Emerging Challenges in Securing Modern Applications

May 1, 2019 — by Radware0

appsecurity-960x474.jpg

Modern applications are difficult to secure. Whether they are web or mobile, custom developed or SaaS-based, applications are now scattered across different platforms and frameworks. To accelerate service development and business operations, applications rely on third-party resources that they interact with via APIs, well-orchestrated by state-of-the-art automation and synchronization tools. As a result, the attack surface becomes greater as there are more blind spots – higher exposure to risk.

Applications, as well as APIs, must be protected against an expanding variety of attack methods and sources and must be able to make educated decisions in real time to mitigate automated attacks. Moreover, applications constantly change, and security policies must adopt just as fast. Otherwise, businesses face increased manual labor and operational costs, in addition to a weaker security posture. 

The WAF Ten Commandments

The OWASP Top 10 list serves as an industry benchmark for the application security community, and provides a starting point for ensuring protection from the most common and virulent threats, application misconfigurations that can lead to vulnerabilities, and detection tactics and mitigations. It also defines the basic capabilities required from a Web Application Firewall in order to protect against common attacks targeting web applications like injections, cross-site scripting, CSRF, session hijacking, etc. There are numerous ways to exploit these vulnerabilities, and WAFs must be tested for security effectiveness.

However, vulnerability protection is just the basics. Advanced threats force application security solutions to do more.

Challenge 1: Bot Management

52% of internet traffic is bot generated, half of which is attributed to “bad” bots. Unfortunately, 79% of organizations can’t make a clear distinction between good and bad bots. The impact is felt across all business arms as bad bots take over user accounts and payment information, scrape confidential data, hold up inventory and skew marketing metrics, thus leading to wrong decisions. Sophisticated bots mimic human behavior and easily bypass CAPTCHA or other challenges. Distributed bots render IP-based and even device fingerprinting based protection ineffective. Defenders must level up the game.

[You may also like: CISOs, Know Your Enemy: An Industry-Wise Look At Major Bot Threats]

Challenge 2: Securing APIs

Machine-to-machine communications, integrated IoTs, event driven functions and many other use cases leverage APIs as the glue for agility. Many applications gather information and data from services with which they interact via APIs. Threats to API vulnerabilities include injections, protocol attacks, parameter manipulations, invalidated redirects and bot attacks. Businesses tend to grant access to sensitive data, without inspecting nor protect APIs to detect cyberattacks. Don’t be one of them.

[You may also like: How to Prevent Real-Time API Abuse]

Challenge 3: Denial of Service

Different forms of application-layer DoS attacks are still very effective at bringing application services down. This includes HTTP/S floods, low and slow attacks (Slowloris, LOIC, Torshammer), dynamic IP attacks, buffer overflow, Brute Force attacks and more. Driven by IoT botnets, application-layer attacks have become the preferred DDoS attack vector. Even the greatest application protection is worthless if the service itself can be knocked down.

[You may also like: DDoS Protection Requires Looking Both Ways]

Challenge 4: Continuous Security

For modern DevOps, agility is valued at the expense of security. Development and roll-out methodologies, such as continuous delivery, mean applications are continuously modified. It is extremely difficult to maintain a valid security policy to safeguard sensitive data in dynamic conditions without creating a high number of false positives. This task has gone way beyond humans, as the error rate and additional costs they impose are enormous. Organizations need machine-learning based solutions that map application resources, analyze possible threats, create and optimize security policies in real time.

[You may also like: Are Your DevOps Your Biggest Security Risks?]

Protecting All Applications

It’s critical that your solution protects applications on all platforms, against all attacks, through all the channels and at all times. Here’s how:

  • Application security solutions must encompass web and mobile apps, as well as APIs.
  • Bot Management solutions need to overcome the most sophisticated bot attacks.
  • Mitigating DDoS attacks is an essential and integrated part of application security solutions.
  • A future-proof solution must protect containerized applications, serverless functions, and integrate with automation, provisioning and orchestration tools.
  • To keep up with continuous application delivery, security protections must adapt in real time.
  • A fully managed service should be considered to remove complexity and minimize resources.

Read “Radware’s 2018 Web Application Security Report” to learn more.

Download Now

SecurityService Provider

Bot Management: A Business Opportunity for Service Providers

April 30, 2019 — by Radware0

BotManagementSP-960x540.jpg

Over half of all internet traffic is generated by bots — some legitimate, some malicious. These “bad” bots are often deployed with various capabilities to achieve their nefarious objectives, which can include account takeover, scraping data, denying available inventory and launching denial-of-service attacks with the intent of stealing data or causing service disruptions. Sophisticated, large-scale attacks often go undetected by conventional mitigation systems and strategies.

Bots represent a clear and present danger to service providers. The inability to accurately distinguish malicious bots from legitimate traffic/users can leave a service provider exposed and at risk to suffer customer loss, lost profits and irreparable brand damage.

In an age where securing the digital experience is a competitive differentiator, telecommunication companies, management services organizations (MSOs) and internet service providers (ISPs) must transform their infrastructures into service-aware architectures that deliver scalability and security to customers, all the while differentiating themselves and creating revenue by selling security services.

[You may also like: Bot Managers Are a Cash-Back Program For Your Company]

Bot Traffic in the Service Provider Network

Bot attacks often go undetected by conventional mitigation systems and strategies because they have evolved from basic scripts into large-scale distributed bots with human-like interaction capabilities. Bots have undergone a transformation, or evolution, over the years. Generally speaking, they can be classified into four categories, or levels, based on their degree of sophistication.

The four categories of malicious bots.

In addition to the aforementioned direct impact that these bots have, there is the added cost associated with increased traffic loads imposed on service providers’ networks. In an age of increased competition and the growth of multimedia consumption, it is critical that service providers accurately eliminate “bad” bots from their networks.

[You may also like: The Big, Bad Bot Problem]

Staying ahead of the evolving threat landscape requires more sophisticated, advanced capabilities to accurately detect and mitigate these threats. These include combining behavioral modeling, collective bot intelligence and capabilities such as device fingerprinting and intent-based deep behavioral analysis (IDBA) for precise bot management across all channels.

Protecting Core Application from Bot Access

Bots attack web and mobile applications as well as application programming interfaces (APIs). Bot-based application DoS attacks degrade web applications by exhausting system resources, third-party APIs, inventory databases and other critical resources.

[You may also like: How to Prevent Real-Time API Abuse]

IDBA is now one of the critical capabilities needed to mitigate advanced bots. It performs behavioral analysis at a higher level of abstraction of “intent,” unlike commonly used, shallow “interaction”-based behavior analysis. IDBA is a critical next-generation capability to mitigate account takeovers executed by more advanced Generation 3 and 4 bots, as it leverages the latest developments in deep learning and behavioral analysis to decode the true intention of bots. IDBA goes beyond analyzing mouse movements and keystrokes to detect human-like bots, so “bad” bots can be parsed from legitimate traffic to ensure a seamless online experience for consumers.

API Exposure

APIs are increasingly used to exchange data or to integrate with partners, and attackers understand this. It is essential to accurately distinguish between “good” API calls and “bad” API calls for online businesses. Attackers reverse engineer mobile and web applications to hijack API calls and program bots to invade these APIs. By doing so, they can take over accounts, scrape critical data and perform application DDoS attacks by deluging API servers with unwanted requests.

Account Takeover

This category encompasses ways in which bots are programmed to use false identities to obtain access to data or goods. Their methods for account takeover can vary. They can hijack existing accounts by cracking a password via Brute Force attacks or by using known credentials that have been leaked via credential stuffing. Lastly, they can be programmed to create new accounts to carry out their nefarious intentions.

[You may also like: Will We Ever See the End of Account Theft?]

As its name suggests, this category encompasses an array of attacks focused on cracking credentials, tokens or verification codes/numbers with the goal of creating or cracking account access to data or products. Examples include account creation, token cracking and credential cracking/stuffing. Nearly all of these attacks primarily target login pages.

The impact of account takeover? Fraudulent transactions, abuse of reward programs, and damage to brand reputation.

Advertising Traffic Fraud

Malicious bots create false impressions and generate illegitimate clicks on publishing sites and their mobile apps. In addition, website metrics, such as visits and conversions, are vulnerable to skewing. Bots pollute metrics, disrupt funnel analysis and inhibit key performance indicator (KPI) tracking. Automated traffic on your website also affects product metrics, campaign data and traffic analytics. Skewed analytics are a major hindrance to marketers who need reliable data for their decision-making processes.

[You may also like: Ad Fraud 101: How Cybercriminals Profit from Clicks]

The Business Opportunity for Service Providers

Regardless of the type of attack, service providers are typically held to high expectations when it comes to keeping customer data secure and maintaining service availability. With each attack, service providers risk customer loss, brand reputation, lost profits and at the worst, costly governmental involvement and the resulting investigations and lawsuits.

These same business expectations apply to service providers’ customers, many of whom require security services. Although large organizations can attempt to develop their own in-house bot management solutions, these companies do not necessarily have the time, money and expertise to build and maintain them.

Building an adaptive bot mitigation solution can take years of specialized development. Financially, it makes sense to minimize capex and purchase a cloud-based bot mitigation solution on a subscription basis. This can help companies realize the value of bot management without making a large upfront investment.

Lastly, this allows service providers to protect their core infrastructure and their own customers from bot-based cyberattacks and provides the opportunity to extend any bot management solution as part of a cloud security services offering to generate a new revenue stream.

2018 Mobile Carrier Ebook

Read “Creating a Secure Climate for your Customers” today.

Download Now

Attack MitigationDDoSSecurity

DDoS Protection Requires Looking Both Ways

March 26, 2019 — by Eyal Arazi3

ddos-960x540.jpg

Service availability is a key component of the user experience. Customers expect services to be constantly available and fast-responding, and any downtime can result in disappointed users, abandoned shopping carts, and lost customers.

Consequently, DDoS attacks are increasing in complexity, size and duration. Radware’s 2018 Global Application and Network Security Report found that over the course of a year, sophisticated DDoS attacks, such as burst attacks, increased by 15%, HTTPS floods grew by 20%, and over 64% of customers were hit by application-layer (L7) DDoS attacks.

Some Attacks are a Two-Way Street

As DDoS attacks become more complex, organizations require more elaborate protections to mitigate such attacks. However, in order to guarantee complete protection, many types of attacks – particularly the more sophisticated ones – require visibility into both inbound and outbound channels.

Some examples of such attacks include:

Out of State Protocol Attacks: Some DDoS attacks exploit weaknesses in protocol communication processes, such as TCP’s three-way handshake sequence, to create ‘out-of-state’ connection requests, thereby drawing-out connection requests in order to exhaust server resources. While some attacks of this type, such as a SYN flood, can be stopped by examining the inbound channel only, others require visibility into the outbound channel, as well.

An example of this is an ACK flood, whereby attackers continuously send forged TCP ACK packets towards the victim host. The target host then tries to associate the ACK reply to an existing TCP connection, and if none such exists, it will drop the packet. However, this process consumes server resources, and large numbers of such requests can deplete system resources. In order to correctly identify and mitigate such attacks, defenses need visibility to both inbound SYN and outbound SYN/ACK replies, so that they can verify whether the ACK packet is associated with any legitimate connection request.

[You may also like: An Overview of the TCP Optimization Process]

Reflection/Amplification Attacks: Such attacks exploit asymmetric responses between the connection requests and replies of certain protocols or applications. Again, some types of such attacks require visibility into both the inbound and outbound traffic channels.

An example of such attack is a large-file outbound pipe saturation attack. In such attacks, the attackers identify a very large file on the target network, and send a connection request to fetch it. The connection request itself can be only a few bytes in size, but the ensuing reply could be extremely large. Large amounts of such requests can clog-up the outbound pipe.

Another example are memcached amplification attacks. Although such attacks are most frequently used to overwhelm a third-party target via reflection, they can also be used to saturate the outbound channel of the targeted network.

[You may also like: 2018 In Review: Memcache and Drupalgeddon]

Scanning Attacks: Large-scale network scanning attempts are not just a security risk, but also frequently bear the hallmark of a DDoS attack, flooding the network with malicious traffic. Such scan attempts are based on sending large numbers of connection requests to host ports, and seeing which ports answer back (thereby indicating that they are open). However, this also leads to high volumes of error responses by closed ports. Mitigation of such attacks requires visibility into return traffic in order to identify the error response rate relative to actual traffic, in order for defenses to conclude that an attack is taking place.

Server Cracking: Similar to scanning attacks, server cracking attacks involve sending large amounts of requests in order to brute-force system passwords. Similarly, this leads to a high error reply rate, which requires visibility into both the inbound and outbound channels in order to identify the attack.

Stateful Application-Layer DDoS Attacks: Certain types of application-layer (L7) DDoS attacks exploit known protocol weaknesses or order to create large amounts of spoofed requests which exhaust server resources. Mitigating such attacks requires state-aware bi-directional visibility in order to identify attack patterns, so that the relevant attack signature can be applied to block it. Examples of such attacks are low-and-slow and application-layer (L7) SYN floods, which draw-out HTTP and TCP connections in order to continuously consume server resources.

[You may also like: Layer 7 Attack Mitigation]

Two-Way Attacks Require Bi-Directional Defenses

As online service availability becomes ever-more important, hackers are coming up with more sophisticated attacks than ever in order to overwhelm defenses. Many such attack vectors – frequently the more sophisticated and potent ones – either target or take advantages of the outbound communication channel.

Therefore, in order for organizations to fully protect themselves, they must deploy protections that allow bi-directional inspection of traffic in order to identify and neutralize such threats.

Read “The Trust Factor: Cybersecurity’s Role in Sustaining Business Momentum” to learn more.

Download Now

Attack MitigationDDoSDDoS Attacks

What Do Banks and Cybersecurity Have in Common? Everything.

February 7, 2019 — by Radware1

bank-960x640.jpg

New cyber-security threats require new solutions. New solutions require a project to implement them. The problems and solutions seem infinite while budgets remain bounded. Therefore, the challenge becomes how to identify the priority threats, select the solutions that deliver the best ROI and stretch dollars to maximize your organization’s protection. Consultants and industry analysts can help, but they too can be costly options that don’t always provide the correct advice.

So how best to simplify the decision-making process? Use an analogy. Consider that every cybersecurity solution has a counterpart in the physical world. To illustrate this point, consider the security measures at banks. They make a perfect analogy, because banks are just like applications or computing environments; both contain valuables that criminals are eager to steal.

The first line of defense at a bank is the front door, which is designed to allow people to enter and leave while providing a first layer of defense against thieves. Network firewalls fulfill the same role within the realm of cyber security. They allow specific types of traffic to enter an organization’s network but block mischievous visitors from entering. While firewalls are an effective first line of defense, they’re not impervious. Just like surreptitious robbers such as Billy the Kid or John Dillinger, SSL/TLS-based encrypted attacks or nefarious malware can sneak through this digital “front door” via a standard port.

Past the entrance there is often a security guard, which serves as an IPS or anti-malware device. This “security guard,” which is typically anti-malware and/or heuristic-based IPS function, seeks to identify unusual behavior or other indicators that trouble has entered the bank, such as somebody wearing a ski mask or perhaps carrying a concealed weapon.

[You may also like: 5 Ways Malware Defeats Cyber Defenses & What You Can Do About It]

Once the hacker gets past these perimeter security measures, they find themselves at the presentation layer of the application, or in the case of a bank, the teller. There is security here as well. Firstly, authentication (do you have an account) and second, two-factor authentication (an ATM card/security pin). IPS and anti-malware devices work in
concert with SIEM management solutions to serve as security cameras, performing additional security checks. Just like a bank leveraging the FBI’s Most Wanted List, these solutions leverage crowd sourcing and big-data analytics to analyze data from a massive global community and identify bank-robbing malware in advance.

A robber will often demand access to the bank’s vault. In the realm of IT, this is the database, where valuable information such as passwords, credit card or financial transaction information or healthcare data is stored. There are several ways of protecting this data, or at the very least, monitoring it. Encryption and database
application monitoring solutions are the most common.

Adapting for the Future: DDoS Mitigation

To understand how and why cyber-security models will have to adapt to meet future threats, let’s outline three obstacles they’ll have to overcome in the near future: advanced DDoS mitigation, encrypted cyber-attacks, and DevOps and agile software development.

[You may also like: Agile, DevOps and Load Balancers: Evolution of Network Operations]

A DDoS attack is any cyber-attack that compromises a company’s website or network and impairs the organization’s ability to conduct business. Take an e-commerce business for example. If somebody wanted to prevent the organization from conducting business, it’s not necessary to hack the website but simply to make it difficult for visitors to access it.

Leveraging the bank analogy, this is why banks and financial institutions leverage multiple layers of security: it provides an integrated, redundant defense designed to meet a multitude of potential situations in the unlikely event a bank is robbed. This also includes the ability to quickly and effectively communicate with law enforcement. In the world of cyber security, multi-layered defense is also essential. Why? Because preparing for “common” DDoS attacks is no longer enough. With the growing online availability of attack tools and services, the pool of possible attacks is larger than ever. This is why hybrid protection, which combines both on-premise and cloud-based mitigation services, is critical.

[You may also like: 8 Questions to Ask in DDoS Protection]

Why are there two systems when it comes to cyber security? Because it offers the best of both worlds. When a DDoS solution is deployed on-premise, organizations benefit from an immediate and automatic attack detection and mitigation solution. Within a few seconds from the initiation of a cyber-assault, the online services are well protected and the attack is mitigated. However, on-premise DDoS solution cannot handle volumetric network floods that saturate the Internet pipe. These attacks must be mitigated from the cloud.

Hybrid DDoS protections aspire to offer best-of-breed attack mitigation by combining on-premise and cloud mitigation into a single, integrated solution. The hybrid solution chooses the right mitigation location and technique based on attack characteristics. In the hybrid solution, attack detection and mitigation starts immediately and automatically using the on-premise attack mitigation device. This stops various attacks from diminishing the availability of the online services. All attacks are mitigated on-premise, unless they threaten to block the Internet pipe of the organization. In case of pipe saturation, the hybrid solution activates cloud mitigation and the traffic is diverted to the cloud, where it is scrubbed before being sent back to the enterprise.

[You may also like: Choosing the Right DDoS Solution – Part IV: Hybrid Protection]

An ideal hybrid solution also shares essential information about the attack between on-premise mitigation devices and cloud devices to accelerate and enhance the mitigation of the attack once it reaches the cloud.

Inspecting Encrypted Data

Companies have been encrypting data for well over 20 years. Today, over 50% of Internet traffic is encrypted. SSL/TLS encryption is still the most effective way to protect data as it ties the encryption to both the source and destination. This is a double-edged sword however. Hackers are now leveraging encryption to create new, stealthy attack vectors for malware infection and data exfiltration. In essence, they’re a wolf in sheep’s clothing. To stop hackers from leveraging SSL/TLS-based cyber-attacks, organizations require computing resources; resources to inspect communications to ensure they’re not infected with malicious malware. These increasing resource requirements make it challenging for anything but purpose built hardware to conduct inspection.

[You may also like: HTTPS: The Myth of Secure Encrypted Traffic Exposed]

The equivalent in the banking world is twofold. If somebody were to enter wearing a ski mask, that person probably wouldn’t be allowed to conduct a transaction, or secondly, there can be additional security checks when somebody enters a bank and requests a large or unique withdrawal.

Dealing with DevOps and Agile Software Development

Lastly, how do we ensure that, as applications become more complex, they don’t become increasingly vulnerable either from coding errors or from newly deployed functionality associated with DevOps or agile development practices? The problem is most cyber-security solutions focus on stopping existing threats. To use our bank analogy again, existing security solutions mean that (ideally), a career criminal can’t enter a bank, someone carrying a concealed weapon is stopped or somebody acting suspiciously is blocked from making a transaction. However, nothing stops somebody with no criminal background or conducting no suspicious activity from entering the bank. The bank’s security systems must be updated to look for other “indicators” that this person could represent a threat.

[You may also like: WAFs Should Do A Lot More Against Current Threats Than Covering OWASP Top 10]

In the world of cyber-security, the key is implementing a web application firewall that adapts to evolving threats and applications. A WAF accomplishes this by automatically detecting and protecting new web applications as they are added to the network via automatic policy generation. It should also differentiate between false positives and false negatives. Why? Because just like a bank, web applications are being accessed both by desired legitimate users and undesired attackers (malignant users whose goal is to harm the application and/or steal data). One of the biggest challenges in protecting web applications is the ability to accurately differentiate between the two and identify and block security threats while not disturbing legitimate traffic.

Adaptability is the Name of the Game

The world we live in can be a dangerous place, both physically and digitally. Threats are constantly changing, forcing both financial institutions and organizations to adapt their security solutions and processes. When contemplating the next steps, consider the following:

  • Use common sense and logic. The marketplace is saturated with offerings. Understand how a cybersecurity solution will fit into your existing infrastructure and the business value it will bring by keeping yourorganization up and running and your customer’s data secure.
  • Understand the long-term TCO of any cyber security solution you purchase.
  • The world is changing. Ensure that any cyber security solution you implement is designed to adapt to the constantly evolving threat landscape and your organization’s operational needs.

Read “The Trust Factor: Cybersecurity’s Role in Sustaining Business Momentum” to learn more.

Download Now

Attack Types & VectorsDDoSDDoS Attacks

Top 3 Cyberattacks Targeting Proxy Servers

January 16, 2019 — by Daniel Smith0

Proxy-960x540.jpg

Today, many organizations are now realizing that DDoS defense is critical to maintaining an exceptional customer experience. Why? Because nothing diminishes load times or impacts the end user’s experience more than a cyberattack.

As a facilitator of access to content and networks, proxy servers have become a focal point for those seeking to cause grief to organizations via cyberattacks due to the fallout a successful assault can have.

Attacking the CDN Proxy

New vulnerabilities in content delivery networks (CDNs) have left many wondering if the networks themselves are vulnerable to a wide variety of cyberattacks. Here are five cyber “blind spots” that are often attacked – and how to mitigate the risks:

Increase in dynamic content attacks. Attackers have discovered that treatment of dynamic content requests is a major blind spot in CDNs. Since the dynamic content is not stored on CDN servers, all requests for dynamic content are sent to the origin’s servers. Attackers are taking advantage of this behavior to generate attack traffic that contains random parameters in HTTP GET requests. CDN servers immediately redirect this attack traffic to the origin—expecting the origin’s server to handle the requests. However, in many cases the origin’s servers do not have the capacity to handle all those attack requests and fail to provide online services to legitimate users. That creates a denial-of-service situation. Many CDNs can limit the number of dynamic requests to the server under attack. This means they cannot distinguish attackers from legitimate users and the rate limit will result in legitimate users being blocked.

SSL-based DDoS attacks. SSL-based DDoS attacks leverage this cryptographic protocol to target the victim’s online services. These attacks are easy to launch and difficult to mitigate, making them a hacker favorite. To detect and mitigate SSL-based attacks, CDN servers must first decrypt the traffic using the customer’s SSL keys. If the customer is not willing to provide the SSL keys to its CDN provider, then the SSL attack traffic is redirected to the customer’s origin. That leaves the customer vulnerable to SSL attacks. Such attacks that hit the customer’s origin can easily take down the secured online service.

[You may also like: SSL Attacks – When Hackers Use Security Against You]

During DDoS attacks, when web application firewall (WAF) technologies are involved, CDNs also have a significant scalability weakness in terms of how many SSL connections per second they can handle. Serious latency issues can arise. PCI and other security compliance issues are also a problem because they limit the data centers that can be used to service the customer. This can increase latency and cause audit issues.

Keep in mind these problems are exacerbated with the massive migration from RSA algorithms to ECC and DH-based algorithms.

Attacks on non-CDN services. CDN services are often offered only for HTTP/S and DNS applications.  Other online services and applications in the customer’s data center, such as VoIP, mail, FTP and proprietary protocols, are not served by the CDN. Therefore, traffic to those applications is not routed through the CDN. Attackers are taking advantage of this blind spot and launching attacks on such applications. They are hitting the customer’s origin with large-scale attacks that threaten to saturate the Internet pipe of the customer. All the applications at the customer’s origin become unavailable to legitimate users once the internet pipe is saturated, including ones served by the CDN.

[You may also like: CDN Security is NOT Enough for Today]

Direct IP attacks. Even applications that are served by a CDN can be attacked once attackers launch a direct hit on the IP address of the web servers at the customer’s data center. These can be network-based flood attacks such as UDP floods or ICMP floods that will not be routed through CDN services and will directly hit the customer’s servers. Such volumetric network attacks can saturate the Internet pipe. That results in degradation to application and online services, including those served by the CDN.

Web application attacks. CDN protection from threats is limited and exposes web applications of the customer to data leakage and theft and other threats that are common with web applications. Most CDN- based WAF capabilities are minimal, covering only a basic set of predefined signatures and rules. Many of the CDN-based WAFs do not learn HTTP parameters and do not create positive security rules. Therefore, these WAFs cannot protect from zero-day attacks and known threats. For companies that do provide tuning for the web applications in their WAF, the cost is extremely high to get this level of protection. In addition to the significant blind spots identified, most CDN security services are simply not responsive enough, resulting in security configurations that take hours to manually deploy. Security services are using technologies (e.g., rate limit) that have proven inefficient in recent years and lack capabilities such as network behavioral analysis, challenge-response mechanisms and more.

[You may also like: Are Your Applications Secure?]

Finding the Watering Holes

Waterhole attack vectors are all about finding the weakest link in a technology chain. These attacks target often forgotten, overlooked or not intellectually attended to automated processes. They can lead to unbelievable devastation. What follows is a list of sample watering hole targets:

  • App stores
  • Security update services
  • Domain name services
  • Public code repositories to build websites
  • Webanalytics platforms
  • Identity and access single sign-on platforms
  • Open source code commonly used by vendors
  • Third-party vendors that participate in the website

The DDoS attack on Dyn in 2016 has been the best example of the water-holing vector technique to date. However, we believe this vector will gain momentum heading into 2018 and 2019 as automation begins to pervade every aspect of our life.

Attacking from the Side

In many ways, side channels are the most obscure and obfuscated attack vectors. This technique attacks the integrity of a company’s site through a variety of tactics:

  • DDoS the company’s analytics provider
  • Brute-force attack against all users or against all of the site’s third-party companies
  • Port the admin’s phone and steal login information
  • Massive load on “page dotting”
  • Large botnets to “learn” ins and outs of a site

Read the “2018 C-Suite Perspectives: Trends in the Cyberattack Landscape, Security Threats and Business Impacts” to learn more.

Download Now

Attack Types & VectorsCloud SecurityDDoS AttacksSecurity

2019 Predictions: Will Cyber Serenity Soon Be a Thing of the Past?

November 29, 2018 — by Daniel Smith1

AdobeStock_227784320-2-960x600.jpg

In 2018 the threat landscape evolved at a breakneck pace, from predominantly DDoS and ransom attacks (in 2016 and 2017, respectively), to automated attacks. We saw sensational attacks on APIs, the ability to leverage weaponized Artificial Intelligence, and growth in side-channel and proxy-based attacks.

And by the looks of it, 2019 will be an extension of the proverbial game of whack-a-mole, with categorical alterations to the current tactics, techniques and procedures (TTPs). While nobody knows exactly what the future holds, strong indicators today enable us to forecast trends in the coming year.

The public cloud will experience a massive security attack

The worldwide public cloud services market is projected to grow 17.3 percent in 2019 to total $206.2 billion, up from $175.8 billion in 2018, according to Gartner, Inc. This means organizations are rapidly shifting content to the cloud, and with that data shift comes new vulnerabilities and threats. While cloud adoption is touted as faster, better, and easier, security is often overlooked for performance and overall cost. Organizations trust and expect their cloud providers to adequately secure information for them, but perception is not always a reality when it comes to current cloud security, and 2019 will demonstrate this.

[You may also like: Cloud vs DDoS, the Seven Layers of Complexity]

Ransom techniques will surge

Ransom, including ransomware and ransom RDoS, will give way to hijacking new embedded technologies, along with holding healthcare systems and smart cities hostage with the launch of 5G networks and devices. What does this look like? The prospects are distressing:

  • Hijacking the availability of a service—like stock trading, streaming video or music, or even 911—and demanding a ransom for the digital return of the devices or network.
  • Hijacking a device. Not only are smart home devices like thermostats and refrigerators susceptible to security lapses, but so are larger devices, like automobiles.
  • Healthcare ransom attacks pose a particularly terrifying threat. As healthcare is increasingly interwoven with cloud-based monitoring, services and IoT embedded devices responsible for administering health management (think prescriptions/urgent medications, health records, etc.) are vulnerable, putting those seeking medical care in jeopardy of having their healthcare devices that they a dependent on being targeted by malware or their devices supporting network being hijacked.

[You may also like: The Origin of Ransomware and Its Impact on Businesses]

Nation state attacks will increase

As trade and other types of “soft-based’ power conflicts increase in number and severity, nation states and other groups will seek new ways of causing widespread disruption including Internet outages at the local or regional level, service outages, supply chain attacks and application blacklisting by government in attempted power grabs. Contractors and government organizations are likely to be targeted, and other industries will stand to lose millions of dollars as indirect victims if communications systems fail and trade grinds to a halt.

More destructive DDoS attacks are on the way

Over the past several years, we’ve witnessed the development and deployment of massive IoT-based botnets, such as Mirai, Brickerbot, Reaper and Haijme, whose systems are built around thousands of compromised IoT devices.  Most of these weaponized botnets have been used in cyberattacks to knock out critical devices or services in a relatively straightforward manner.

Recently there has been a change in devices targeted by bot herders. Based on developments we are seeing in the wild, attackers are not only infiltrating resource-constrained IoT devices, they are also targeting powerful cloud-based servers. When targeted, only a handful of compromised instances are needed to create a serious threat. Since IoT malware is cross-compiled for many platforms, including x86_64, we expect to see attackers consistently altering and updating Mirai/Qbot scanners to include more cloud-based exploits going into 2019.

[You may also like: IoT Botnets on the Rise]

Cyber serenity may be a thing of the past

If the growth of the attack landscape continues to evolve into 2019 through various chaining attacks and alteration of the current TTP’s to include automated features, the best years of cybersecurity may be behind us. Let’s hope that 2019 will be the year we collectively begin to really share intelligence and aid one another in knowledge transfer; it’s critical in order to address the threat equation and come up with reasonable and achievable solutions that will abate the ominous signs before us all.

Until then, pay special attention to weaponized AI, large API attacks, proxy attacks and automated social engineering. As they target the hidden attack surface of automation, they will no doubt become very problematic moving forward.

Read the “2018 C-Suite Perspectives: Trends in the Cyberattack Landscape, Security Threats and Business Impacts” to learn more.

Download Now

Application SecurityAttack MitigationDDoS AttacksSecurityWAF

Protecting Applications in a Serverless Architecture

November 8, 2018 — by Ben Zilberman2

Serverless-960x640.jpg

Serverless architectures are revolutionizing the way organizations procure and use enterprise technology. Until recently, information security architecture was relatively simple; you built a fortress around a server containing sensitive data, and deployed security solutions to control the flow of users accessing and leaving that server.

But how do you secure a server-less environment?

The Basics of Serverless Architecture

Serverless architecture is an emerging trend in cloud-hosted environments and refers to applications that significantly depend on third-party services (known as Backend-as-a-Service or “BaaS”) or on custom code that’s run in ephemeral containers (known as Function-as-a-Service or “FaaS”). And it is significantly more cost effective than buying or renting servers.

The rapid adoption of micro-efficiency-based pricing models (a.k.a PPU, or pay-per-use) pushes public cloud providers to introduce a business model that meets this requirement. Serverless computing helps providers optimize that model by dynamically managing the allocation of machine resources. As a result, organizations pay based on the actual amount of resources their applications consume, rather than ponying up for pre-purchased units of workload capacity (which is usually higher than what they utilize in reality).

What’s more, going serverless also frees developers and operators from the burdens of provisioning the cloud workload and infrastructure. There is no need to deploy operating systems and patch them, no need to install and configure web servers, and no need to set up or tune auto-scaling policies and systems.

[You may also like: Application Delivery and Application Security Should be Combined]

Security Implications of Going Serverless

The new serverless model coerces a complete change in architecture – nano services of a lot of software ‘particles.’ The operational unit is set of function containers that execute REST API functions, which are invoked upon a relevant client-side event. These function instances are created, run and then terminated. During their run time, they receive, modify and send information that organizations want to monitor and protect. The protection should be dynamic and swift:

  • There is no perimeter or OS to secure
  • Agents and a persistent footprint become redundant.
  • To optimize the business model, the solution must be scalable and ephemeral automation is the key to success

If we break down our application into components that run in a serverless model, the server that runs the APIs uses different layers of code to parse the requests, essentially enlarging the attack surface. However, this isn’t an enterprise problem anymore; it’s the cloud provider’s. Unfortunately, even they sometimes lag in patch management and hardening workloads. Will your DevOps read all of the cloud provider documentation in details?  Most likely, they’ll go with generic permissions. If you want to do something right, you better do it yourself.

Serverless computing doesn’t eradicate all traditional security concerns. Application-level vulnerabilities can still be exploited—with attacks carried out by human hackers or bots—whether they are inherent in the FaaS infrastructure or in the developer function code.

When using a FaaS model, the lack of local persistent storage encourages data transfer between the function and the different persistent storage services (e.g., S3 and DynamoDB by AWS) instead. Additionally, each function eventually processes data received from storage, the client application or from a different function. Every time it’s moved, it becomes vulnerable to leakage or tampering.

In such an environment, it is impossible to track all potential and actual security events. One can’t follow each function’s operation to prevent it from accessing wrong resources. Visibility and forensics must be automated and perform real time contextual analysis. But the question is not whether to use serverless or not because it is more in/secure. Rather, the question is how to do it when your organization goes there.

[You may also like: Web Application Security in a Digitally Connected World]

A New Approach

Simply put, going serverless requires a completely different security approach—one that is dynamic, elastic, and real-time. The security components must be able to move around at the same pace as the applications, functions and data they protect.

First thing’s first: To help avoid code exploitation (which is what attacks boil down to), use encryption and monitor the function’s activity and data access so it has, by default, minimum permissions. Abnormal function behavior, such as expected access to data or non-reasonable traffic flow, must be analyzed.

Next, consider additional measures, like a web application firewall (WAF), to secure your APIs. While an API gateway can manage authentication and enforce JSON and XML validity checks, not all API gateways support schema and structure validation, nor do they provide full coverage of OWASP top 10 vulnerabilities like a WAF does. WAFs apply dozens of protection measures on both inbound and outbound traffic, which is parsed to detect protocol manipulations. Client-side inputs are validated and thousands of rules are applied to detect various injections attacks, XSS attacks, remote file inclusion, direct object references and many more.

[You may also like: Taking Stock of Application-Layer Security Threats]

In addition to detecting known attacks, for the purposes of zero-day attack protection and comprehensive application security, a high-end WAF allows strict policy enforcement where each function can have its own parameters white listed—the recommended approach when deploying a function processing sensitive data or mission-critical business logic.

And—this is critical—continue to mitigate for DDoS attacks. Going serverless does not eliminate the potential for falling susceptible to these attacks, which have changed dramatically over the past few years. Make no mistake: With the growing online availability of attack tools and services, the pool of possible attacks is larger than ever.

Read “Radware’s 2018 Web Application Security Report” to learn more.

Download Now

Application DeliverySecurity

Simple to Use Link Availability Solutions

November 1, 2018 — by Daniel Lakier0

simple_to_use_link_availability_solutions_blog-960x640.jpg

Previously, I discussed how rerouting data center host infrastructure should be part of next-generation DDoS solutions. In this blog, I will discuss how link availability solutions should also play a part. Traditional DDoS solutions offer us a measure of protection against a number of things that can disrupt service to our applications or environment. This is good, but what do we do when our mitigation solutions are downstream from the problem? In other words, what do we do if our service provider goes down either from a cyberattack or other event?

What if we had the capacity to clean the bandwidth provided by our service provider, but the service provider itself is down. How do we prepare for that eventuality? Admittedly, in first world nations with modern infrastructure, this is a less likely scenario. In third world nations with smaller carriers/ISPs and/or outdated infrastructure, it is more common. However, times are changing. The plethora of IoT devices deploying throughout the world makes this scenario more likely. While there is no silver bullet, there are several strategies to help mitigate this risk.

[You may also like: Disaster Recovery: Data Center or Host Infrastructure Reroute]

Is Border Gateway Protocol the Right Solution?

Most companies who consider a secondary provider for internet services have been setting up Border Gateway Protocol (BGP) as the service mechanism. While this can work, it may not be the right choice. BGP is a rigid protocol that takes a reasonable skill level to configure and maintain. It can often introduce complexity and some idiosyncrasies that can cause their own problems—not to mention it tends to be an either-or protocol. You cannot set all traffic to take the best route at all times. It has thresholds and not considered a load balancing protocol. All traffic configured to move in a certain route will move that way until certain thresholds are met and will only switch back once those thresholds/parameters change again. It can also introduce its own problems, including flapping, table size limitations, or cost overruns when it has been used to eliminate pay for usage links.

Any solution in this space needs to solve both the technical and economic issues associated with link availability. The technical issues are broken into two parts: people and technology. In other words, make it easy to use and configure; make it work for multiple use cases that include both inbound and outbound; and if possible eliminate the risk factors that can be associated with rigid solutions like link flapping and the associated downtime that can be caused via re-convergence. The second problem is economic.  Allow people to leverage their investments’ fully. If they pay for bandwidth they should be able to use it. Both links should be active (and load balanced if the customer wants). A common problem with BGP is that one link is fully leveraged, and therefore hits its maximum threshold, while the other link sits idle due to lack of flow control or load balancing.

For several years, organizations have looked for alternatives. The link load balancing and VXLAN marketplace have both been popular alternatives, especially as it relates to branch edge redundancy solutions. Most of these solutions have limitations with inbound network load balancing, resulting in curtailed adoption. In many data centers, especially cloud deployments, the usual flow of traffic involves out-of-network users from the outside initiating the traffic flow.  Most link load balancing solutions and VXLAN solutions are very good at load balancing outbound traffic. The key reason for the technology adoption has been two-fold: the ability to reduce cost with WAN/internet providers and the ability to reduce complexity.

The reduction in cost is focused on two main areas:

  • The ability to use less costly bandwidth (and traditionally less reliable) because the stability was compensated for by load balancing links dynamically
  • The ability to use what we were paying for a buy only the required bandwidth

The reduction in complexity comes from the ease in configuration and simplicity of being able to buy link redundancy solutions as a service.

The unique value of this solution is that you can protect yourself from upstream service outages or upstream burst attacks that trip thresholds in your environment and cause the BGP environment to transition back and forth as failover parameters are met, essentially causing port flapping. The carrier may not experience an outage, but if someone can insert enough latency into the link on a regular basis it could cause a continual outage. Purpose-built link protection and load balancing solutions not only serve an economic purpose but also protect your organization from upstream cyberattacks.

Read “Flexibility Is The Name of the Game” to learn more.

Download Now

Application SecuritySecurityWeb Application Firewall

Credential Stuffing Campaign Targets Financial Services

October 23, 2018 — by Daniel Smith6

credential_financial_hacking-960x677.jpg

Over the last few weeks, Radware has been tracking a significant Credential Stuffing Campaign targeting the financial industry in the United States and Europe.

Background

Credential Stuffing is an emerging threat in 2018 that continues to accelerate as more breaches occur. Today, a breach doesn’t just impact the compromised organization and its users, but it also affects every other website that the users may use.

Additionally, resetting passwords for a compromised application will only solve the problem locally while criminals are still able to leverage those credentials externally against other applications due to poor user credential hygiene.

Credential Stuffing is a subset of brute force attacks but is different from Credential Cracking. Credential Stuffing campaigns do not involve the process of brute forcing password combinations. Credential Stuffing campaigns leverage leaked username and passwords in an automated fashion against numerous websites in an attempt to take over users accounts due to credential reuse.

Criminals, like researchers, collect and data mine leaks databases and breached accounts for several reasons. Typically cybercriminals will keep this information for future targeted attacks, sell it for profit or exploit it in fraudulent ways.

The motivations behind the current campaign that Radware is seeing are strictly fraud related. Criminals are using credentials from prior data breaches in an attempt to gain access and take over user’s bank accounts. These attackers have been seen targeting financial organizations in both the United States and Europe. When significant breaches occur, the compromised email addresses and passwords are quickly leveraged by cybercriminals. Armed with tens of millions of credentials from a recently breached website, attackers will use these credentials along with scripts and proxies to distribute their attack in an automated fashion against the financial institution in an attempt to take over banking accounts. These login attempts can happen in such volumes that they resemble a Distributed Denial of Service (DDoS) attack.

Attack Methods

Credential Stuffing is one of the most commonly used attack vectors by cybercriminals today. It’s an automated web injection attack where criminals use a list of breached credentials in an attempt to gain access and take over accounts across different platforms due to poor credential hygiene. Attackers will route their login request through proxy servers to avoid blacklisting their IP address.

Attackers automate the logins of millions of previously discovered credentials with automation tools like cURL and PhantomJS or tools designed specifically for the attack like Sentry MBA and SNIPR.

This threat is dangerous to both the consumer and organizations due to the ripple effect caused by data breaches. When a company is breached, those credentials compromised will either be used by the attacker or sold to other cybercriminals. Once credentials reach its final destination, a for-profit criminal will use that data, or credentials obtain from a leak site, in an attempt to take over user accounts on multiple websites like social media, banking, and marketplaces. In addition to the threat of fraud and identity theft to the consumer, organizations have to mitigate credential stuffing campaigns that generate high volumes or login requests, eating up resources and bandwidth in the process.

Credential Cracking

Credential Cracking attacks are an automated web attack where criminals attempt to crack users password or PIN numbers by processing through all possible combines of characters in sequence. These attacks are only possible when applications do not have a lockout policy for failed login attempts.

Attackers will use a list of common words or recently leaked passwords in an automated fashion in an attempt to take over a specific account. Software for this attack will attempt to crack the user’s password by mutating, brute forcing, values until the attacker is successfully authenticated.

Targets

In recent campaigns, Radware has seen financial institutions targeted in both the United States and Europe by Credential Stuffing campaigns.

Crimeware

Sentry MBA is one of the most popular Credential Stuffing toolkits used by cybercriminals today. This tool is hosted on the Sentry MBA crackers forum. The tool simplifies and automates the process of checking credentials across multiple websites and allows the attackers to configure a proxy list so they can anonymize their login requests.

SNIPR – Credential Stuffing Toolkit

SNIPR is a popular Credential Stuffing toolkit used by cybercriminals and is found hosted on the SNIPR crackers forums. SNIPR comes with over 100 config files preloaded and the ability to upload personal config files to the public repository.

Reasons for Concern

Recent breaches over the last few years have exposed hundreds of millions of user credentials. One of the main reasons for concern of a Credential Stuffing campaign is due to the impact that it has on the users. Users who reuse credentials across multiple websites are exposing themselves to an increased risk of fraud and identity theft.

The second concern is for organizations who have to mitigate high volumes of fraudulent login attempts that can saturate a network. This saturation can be a cause for concern, as it will appear to be a DDoS attack, originating from random IP addresses coming from a variety of sources, including behind proxies. These requests will look like legitimate attempts since the attacker is not running a brute force attack. If the user: pass for that account does not exist or authenticate on the targeted application the program will move on to the next set of credentials.

Mitigation

In order to defend against a Credential Stuffing campaign, organizations need to deploy a WAF that can properly fingerprint and identify malicious bot traffic as well as automated login attacks directed at your web application. Radware’s AppWall addresses the multiples challenges faced by Credential Stuffing campaigns by introducing additional layers of mitigation including activity tracking and source blocking.

Radware’s AppWall is a Web Application Firewall (WAF) capable of securing Web applications as well as enabling PCI compliance by mitigating web application security threats and vulnerabilities. Radware’s WAF prevents data from leaking or being manipulated which is critically important in regard to sensitive corporate data and/or information about its customers.

The AppWall security filter also detects such attempts to hack into the system by checking the replies sent from the Web server for Bad/OK replies in a specific timeframe. In the event of a Brute Force attack, the number of Bad replies from the Web server (due to a bad username, incorrect password, etc.) triggers the BruteForce security filter to monitor and take action against that specific attacker. This blocking method prevents a hacker from using automated tools to carry out an attack against Web application login page.

In addition to these steps, network operators should apply two-factor authentication where eligible and monitor dump credentials for potential leaks or threats.

Effective Web Application Security Essentials

  • Full OWASP Top-10 coverage against defacements, injections, etc.
  • Low false positive rate – using negative and positive security models for maximum accuracy
  • Auto policy generation capabilities for the widest coverage with the lowest operational effort
  • Bot protection and device fingerprinting capabilities to overcome dynamic IP attacks and achieve improved bot detection and blocking
  • Securing APIs by filtering paths, understanding XML and JSON schemas for enforcement, and activity tracking mechanisms to trace bots and guard internal resources
  • Flexible deployment options – on-premise, out-of-path, virtual or cloud-based

Read “Radware’s 2018 Web Application Security Report” to learn more.

Download Now