main

Application SecurityAttack Types & VectorsBotnetsSecurity

Are Connected Cows a Hacker’s Dream?

April 3, 2019 — by Mike O'Malley0

connected_cows-960x639.jpg

Humans aren’t the only ones consumed with connected devices these days. Cows have joined our ranks.

Believe it or not, farmers are increasingly relying on IoT devices to keep their cattle connected. No, not so that they can moo-nitor (see what I did there?) Instagram, but to improve efficiency and productivity. For example, in the case of dairy farms, robots feed, milk and monitor cows’ health, collecting data along the way that help farmers adjust techniques and processes to increase milk production, and thereby profitability.

The implications are massive. As the Financial Times pointed out, “Creating a system where a cow’s birth, life, produce and death are not only controlled but entirely predictable could have a dramatic impact on the efficiency of the dairy industry.”

From Dairy Farm to Data Center

So, how do connected cows factor into cybersecurity? By the simple fact that the IoT devices tasked with milking, feeding and monitoring them are turning dairy farms into data centers – which has major security implications. Because let’s face it, farmers know cows, not cybersecurity.

Indeed, the data collected are stored in data centers and/or a cloud environment, which opens farmers up to potentially costly cyberattacks. Think about it: The average U.S. dairy farm is a $1 million operation, and the average cow produces $4,000 in revenue per year. That’s a lot at stake—roughly $19,000 per week, given the average dairy farm’s herd—if a farm is struck by a ransomware attack.

[You may also like: IoT Expands the Botnet Universe]

It would literally be better for an individual farm to pay a weekly $2,850 ransom to keep the IoT network up. And if hackers were sophisticated enough to launch an industry-wide attack, the dairy industry would be better off paying $46 million per week in ransom rather than lose revenue.

5G Cows

Admittedly, connected cows aren’t new; IoT devices have been assisting farmers for several years now. And it’s a booming business. Per the FT, “Investment in precision ‘agtech’ systems reached $3.2bn globally in 2016 (including $363m in farm management and sensor technology)…and is set to grow further as dairy farms become a test bed for the wider IoT strategy of big technology companies.”

[You may also like: Securing the Customer Experience for 5G and IoT]

But what is new is the rollout of 5G networks, which promise faster speeds, low latency and increased flexibility—seemingly ideal for managing IoT devices. But, as we’ve previously discussed, with new benefits come new risks. As network architectures evolve to support 5G, security vulnerabilities will abound if cybersecurity isn’t prioritized and integrated into a 5G deployment from the get-go.

In the new world of 5G, cyberattacks can become much more potent, as a single hacker can easily multiply into an army through botnet deployment. Indeed, 5G opens the door to a complex world of interconnected devices that hackers will be able to exploit via a single point of access in a cloud application to quickly expand an attack radius to other connected devices and applications. Just imagine the impact of a botnet deployment on the dairy industry.

[You may also like: IoT, 5G Networks and Cybersecurity: A New Atmosphere for Mobile Network Attacks]

I don’t know about you, but I like my milk and cheeses. Here’s to hoping dairy farmers turn to the experts to properly manage their security before the industry is hit with devastating cyberattacks.

2018 Mobile Carrier Ebook

Read “Creating a Secure Climate for your Customers” today.

Download Now

SecurityService Provider

IoT, 5G Networks and Cybersecurity: Safeguarding 5G Networks with Automation and AI

September 18, 2018 — by Louis Scialabba2

iot-5g-networks-cybersecurity-blog-img-960x519.jpg

By 2020, Gartner says there will be 20.4 billion IoT devices. That rounds out to almost three devices per person on earth. As a result, IoT devices will show up in just about every aspect of daily life. While IoT devices promise benefits such as improved productivity, longevity and enjoyment, they also open a Pandora’s box of security issues for mobile service providers.

This flood of IoT devices, combined with the onset of 5G networks to support it, is creating an atmosphere ripe for mobile network attacks.  This threat landscape requires mobile service providers to alter their approach to network security or suffer dire consequences. The same old tools are no longer enough.

[You might also like: A New Atmosphere for Mobile Network Attacks]

Battle Increased Complexity with Automation

For years, security teams have struggled with the proliferation of data from dozens of security products, outpacing their ability to process it. This same problem applies to mobile service providers regarding the aforementioned issues surrounding 5G and IoT devices.

Security threats and anomalies within mobile network traffic are growing faster than security teams can detect and react to them. All the security threats we see now on enterprise networks are a harbinger of what’s to come on 5G networks. The introduction of 5G adds significant complexities to mobile networks that require next-generation security solutions.

Automation is key to better identification and mitigation of these threats for mobile service providers. Machine-learning based DDoS mitigation solutions enable real-time detection and mitigation of DDoS attacks. Through behavioral analysis, bad traffic can then be identified and automatically blocked before any damage is done.

[You might also like: The Rise of 5G Networks]

Automation Across the Security Architecture

For mobile service providers, automation must expand across all layers of the security architecture. First and foremost, the network must be leveraged as a sensor, a digital cyberattack tripwire. In 5G networks, network elements are distributed at the edge and virtualized. The network’s endpoints can be used as detection spots to send messages back to a centralized control plane (CCP).

The CCP serves as the brain of the network, compiling all the inputs from its telemetry feeds to deploy the best way to apply mitigation policies.

The myriad amount of CCP data can be put to work via Big Data. As 5G pushes network functions and data to the cloud, there’s an opportunity to use this information to better protect against attacks with the help of artificial intelligence (AI) and deep learning.

This is where the “big” in “big data” comes into play. Because 5G virtual devices live on the edge of the network in small appliances, there isn’t enough computing power available to identify evolving attack traffic from within. But by feeding traffic through an extra layer of protection at large data centers, it is possible to efficiently compile all the data to identify attacks.

Large data centers can be prohibitively expensive to house and maintain. Ideally, these data centers are housed and maintained by the mobile service provider’s DDoS mitigation vendor, which leverages its network of cloud-based scrubbing centers (and the massive volumes of threat intelligence it collects) to process this information and automatically feed it back to the mobile service provider.

A Game of Probability

In the end, IoT and 5G security will come down to being a game of probability, however, automation and AI stack the odds heavily in favor of mobile service providers.

The new network technology has the speed and capacity to enable AI with data from 50 billion connected devices. AI requires huge amounts of data to sift through and create neural networks where anomalies can be detected, with emphasis on good data. Bad or poisoned data will lead to biased models and false negatives. The more good data, the better the outcomes in this high-stakes game of probability.

As all this traffic is fed through the scrubbing centers at data centers around the world, AI can help inform security algorithms to detect protocol anomalies and flag issues. The near real-time process is complicated. Like an FBI watch list, a register of attack information goes to a mobile network’s control plane. The result is a threat intelligence feed that uses the power of machine learning to identify and prevent attacks.

The best place to populate AI and deep learning systems is from crowdsourcing and global communities where large numbers of enterprises and networks contribute data. Bad data will find its way in, but the good data will significantly outnumber the bad data to make deep learning possible.

Ultimately, the threats from botnets, web scraping, and IoT zombies is dynamic and increasingly complex. With 5G on the horizon, it’s critical that mobile service providers are proactive and make plans now to protect their networks against evolving security threats by turning to machine learning and AI.

2018 Mobile Carrier Ebook

Read “Creating a Secure Climate for your Customers” today.

Download Now

BotnetsMobile DataMobile SecuritySecurityService Provider

IoT, 5G Networks and Cybersecurity: A New Atmosphere for Mobile Network Attacks

August 28, 2018 — by Louis Scialabba4

cyborg_iot_5g-960x432.jpg

The development and onset of 5G networks bring a broad array of not only mobile opportunities but also a litany of cybersecurity challenges for service providers and customers alike. While the employment of Internet of Things (IoT) devices for large scale cyberattacks has become commonplace, little has been accomplished for their network protection. For example, research by Ponemon Institute has found that 97% of companies believe IoT devices could wreak havoc on their organizations.

With hackers constantly developing technologically sophisticated ways to target mobile network services and their customers, the rapidly-approaching deployment of 5G networks, combined with IoT device vulnerability has created a rich environment for mobile network cyberattacks.

[You might also like: The Rise of 5G Networks]

Forecast Calls for More Changes

Even in today’s widespread use of 4G networks, network security managers face daily changes in security threats from hackers. Just as innovations for security protection improve, the sophistication of attacks will parallel. Cybersecurity agency ENISA forebodes an increase in the prevalence of security risks if security standards’ development doesn’t keep pace.

Add in research company Gartner’s estimate that there will be 20.4 billion connected devices by 2020, hackers will have a happy bundle of unprotected, potential bots to work with. In the new world of 5G, mobile network attacks can become much more potent, as a single hacker can easily multiply into an army through the use of botnet deployment.

Separating the Good from the Bad

Although “bot traffic” has an unappealing connotation to it, not all is bad. Research from Radware’s Emergency Response Team shows that 56% of internet traffic is represented by both good and bad bots, and of that percentage, they contribute almost equally to it. The critical part for service providers, however, is to be able to differentiate the two and stop the bad bots on their path to chaos.

New Technology, New Concerns

Although 4G is expected to continue dominating the market until 2025, 5G services will be in demand as soon as its rollout in 2020 driven by features such as:

  • 100x faster transmission speeds resulting in improved network performance
  • Lower latency for improved device connections and application delivery
  • 1,000x greater data capacity which better supports more simultaneous device connections
  • Value-added services enabled by network slicing for better user experience

The key differentiating variable in the composition of 5G networks is its unique architecture of the distributed nature capabilities, where all network elements and operations function via the cloud. Its flexibility allows for more data to pass through, making it optimal for the incoming explosion of IoT devices and attacks, if unsecured. Attacks can range from standard IoT attacks to burst attacks, even potentially escalating to smartphone infections and operating system malware.

[You might also like: Can You Protect Your Customers in a 5G Universe?]

5G networks will require an open, virtual ecosystem, one where service providers have less control over the physical elements of the network and more dependent on the cloud. More cloud applications will be dependent on a variety of APIs. This opens the door to a complex world of interconnected devices that hackers will be able to exploit via a single point of access in a cloud application to quickly expand the attack radius to other connected devices and applications.

Not only are mobile service providers at risk, but as are their customers; if not careful, this can lead to more serious repercussions regarding customer loyalty and trust between the two.

A Slice of the 5G Universe

Now that the new network technology is virtualized, 5G allows for service providers to “slice” portions of a spectrum as a customizable service for specific types of devices. Each device will now have its own respective security, data-flow processes, quality, and reliability. Although more ideal for their customers, it can simultaneously prove to be a challenge in satisfying the security needs of each slice. Consequently, security can no longer be considered as simply an option but as another integral variable that will need to be fused as part of the architecture from the beginning.

2018 Mobile Carrier Ebook

Read “Creating a Secure Climate for your Customers” today.

Download Now

BotnetsMobile DataMobile SecuritySecurityService Provider

IoT, 5G Networks and Cybersecurity: The Rise of 5G Networks

August 16, 2018 — by Louis Scialabba2

rise-5g-networks-iot-cybersecurity-960x640.jpg

Smartphones today have more computing power than the computers that guided the Apollo 11 moon landing. From its original positioning of luxury, mobile devices have become a necessity in numerous societies across the globe.

With recent innovations in mobile payment such as Apple Pay, Android Pay, and investments in cryptocurrency, cyberattacks have become especially more frequent with the intent of financial gain. In the past year alone, hackers have been able to mobilize and weaponize unsuspected devices to launch severe network attacks. Working with a North American service provider, Radware investigations found that about 30% of wireless network traffic originated from mobile devices launching DDoS attacks.

Each generation of network technology comes with its own set of security challenges.

How Did We Get Here?

Starting in the 1990s, the evolution of 2G networks enabled service providers the opportunity to dip their toes in the water that is security issues, where their sole security challenge was the protection of voice calls. This was resolved through call encryption and the development of SIM cards.

Next came the generation of 3G technology where the universal objective (at the time) for a more concrete and secure network was accomplished. 3G networks became renowned for the ability to provide faster speeds and access to the internet. In addition, the new technology provided better security with encryption for voice calls and data traffic, minimizing the impact and damage levels of data payload theft and rogue networks.

Fast forward to today. The era of 4G technology has evolved the mobile ecosystem to what is now a mobile universe that fits into our pockets. Delivering significantly faster speeds, 4G networks also exposed the opportunities for attackers to exploit susceptible devices for similarly quick and massive DDoS attacks. More direct cyberattacks via the access of users’ sensitive data also emerged – and are still being tackled – such as identity theft, ransomware, and cryptocurrency-related criminal activity.

The New Age

2020 is the start of a massive rollout of 5G networks, making security concerns more challenging. The expansion of 5G technology comes with promises of outstanding speeds, paralleling with landline connection speeds. The foundation of the up-and-coming network is traffic distribution via cloud servers. While greatly benefitting 5G users, this will also allow attackers to equally reap the benefits. Without the proper security elements in place, attackers can wreak havoc with their now broadened horizons of potential chaos.

What’s Next?

In the 5G universe, hackers can simply attach themselves to a 5G connection remotely and collaborate with other servers to launch attacks of a whole new level. Service providers will have to be more preemptive with their defenses in this new age of technology. Because of the instantaneous speeds and low lag time, they’re in the optimal position to defend against cyberattacks before attackers can reach the depths of the cloud server.

2018 Mobile Carrier Ebook

Discover more about what the 5G generation will bring, both benefits and challenges, in Radware’s e-book “Creating a Secure Climate for your Customers” today.

Download Now

SecurityVirtualization

APAC Carriers need time to prepare all the changes required for 5G

October 6, 2016 — by Mike O'Malley1

APAC-mobile-carriers-960x641.jpg

Carriers converged on Singapore last week to discuss the state of the industry and plans for 5G. Singapore remained the same as ever.  Hot and humid weather dominated the banking and shopping mecca in SE Asia. The global slowdown is being felt there, particularly in the continued slide in housing prices, which peaked here in 2013.

Amid this environment, most major APAC Carriers don’t plan to roll out commercial 5G services until 2020. Highlighting the need for continued technical trials, finding the elusive 5G killer app, and the continuing evolution of 5G standards, the APAC Carriers showed little resolve to push 5G commercially prior to 2020.

NFVSDNSecuritySSL

5G Mobile Security Challenge

September 29, 2016 — by David Bachar2

5G-mobile-security-960x443.jpg

A few months ago, I attended the 5G World Congress and listened to discussions around the many challenges and technical requirements facing 5G technology.

The questions everyone wants solved are:

  • Which services actually require 5G access technology? What types of content demand the fastest service? According to lectures delivered by leading mobile service providers such as DoCoMo and KT, 5G networks need to deliver higher date rates to support applications such as 3D hologram video, VR and live broadcast.
  • How will the networks support the exponential growth of end-devices requiring service brought about by IoT? As IoT end devices are carrying different ARPU models, 5G should address this challenge in improved cost per bit technology.
  • What is the best way to support critical services such as voice, and how to build private networks (e.g. for connected antonyms driving cars) with zero latency and improved QoS, avoiding outages?

As 5G will be commercially launched only during the 2020 Tokyo Olympic games, it was agreed that the road to 5G will be via GIGA LTE that delivers 1Gbps data rates already.

Application DeliveryNFVSecurityVirtualization

Mobile World Congress 2016 Recap

March 1, 2016 — by Mike O'Malley5

mwc_updated_img-1.png

After all the meetings have finished, the jamon has been eaten, Rioja has been drunk and all the world’s Mobile Carriers have returned from Barcelona, what have we learned?  And does it fit with what we expected?  As predicted, Mark Zuckerberg chided the industry for focusing too much on IoT connections (who would not open new Facebook accounts), but he also spoke about spending more to connect to people in the developing world (who would open new Facebook accounts).

Application DeliverySecurityVirtualization

What to Expect at MWC 2016

February 18, 2016 — by Mike O'Malley0

mwc-2016-2-960x608.jpg

Once again another year has started and the Mobile industry will descend upon Barcelona to discuss the latest trends.  There will be the obligatory talks about over-the-top applications. Tech personalities like Facebook CEO Mark Zuckerberg will discuss how all people on the planet need a fast mobile Internet.  The Tier 1 Carriers will all discuss their plans for 5G.  I do, however, expect to see some new themes this year that will add new dimensions to this yearly event.

Application SecuritySecurity

Consumers’ Insatiable APP-etites Slowed, but Not Stopped by Security

October 29, 2015 — by Ben Desjardins0

The other day I was making my way through the airport and stopped at a restaurant for a quick bite to eat. I took a seat at the bar, and the bartender pointed out the tablet waiting for me from which I could view the menu and order my lunch.

So this is what we’ve come to… an obsession with digitizing every interaction to the point where I use an app to communicate to the person five feet in front of me? While perhaps a somewhat extreme and silly (though 100% true) example, we are clearly on a path of living and interacting increasingly through apps.

Attack MitigationData CenterMobile Security

The Radware Executive Exchange 2012: A Recap from Tel Aviv

November 19, 2012 — by Sharon Trachtman2

It’s not everyday you can get 300 intelligent, motivated and successful IT executives all in one place. But this past week at the Radware Executive Exchange, we saw administrators from all over the globe travel to Tel Aviv, Israel to discuss the latest application delivery controllers, data center evolution and attack mitigation offerings from Radware.

In three days, there was a mixture of IT presentations, as well as a number of breakout sessions, where customers could see the latest technology and tools offered by Radware, first hand.