main

Service Provider

5G: You Can Have Your Slice and Security Too!

April 25, 2019 — by Louis Scialabba0

5g_slice-960x667.jpg

We have heard it before. Another generation of mobile architecture is upon us and we are euphoric for all the cool things we can do more of.  And of course good marketers will swear that you can lasso the moon if you have enough money to pay for it.

Let’s inspect 5G for what it really is, save the hype.  It is an upgrade in the mobile architecture that pushes new computing elements and services closer to the edge in order to scale and improve network performance.  The 5G specifications rely on virtualized and distributed network functions that span across remote locations, and is heavily dependent on robust, secure interworking between remote and local virtualized network functions. 

5G also opens the network to new services using IT protocols and Open APIs – the latter of which introduces significant additional liability on the responsibility of the carrier network security owner.

I’ll Take a Slice of That

The “Network Slicing” concept in 5G aims to isolate specific application traffic into a dedicated virtual network. Each slice carries the traffic originating from a specific application, such as IoT Telemetry and Autonomous Vehicles, Smart City and Smartphone. Each application has its unique network traffic pattern and requires specific security policies. Having an isolated virtual networks brings security benefit and limits security risk impact to the specific slice.

[You may also like: Here’s How Carriers Can Differentiate Their 5G Offerings]

Sharpening the Edge

With this new network paradigm based on service-based architecture (SBA), the previous 3G and 4G network element boxes transformed into a cloud of micro-services functions, distributed and disaggregated based on the carrier coverage needs and specific applications deployed in the carrier network. The new architecture exposes many internet interfaces in various network segments from the core peering link up to the far-edge compute to address scale and low-latency requirements.

Such mass exposure of external internet interfaces significantly raises the cyber security threat level. IoT and its applications running at the far edge provides new services based on vast usage of open, published interfaces based on HTTP\2.  On one hand, this enables openness and service agility, and on the other, extensive exposure to attacks tools and tactics using publicly available information to wreak havoc on network infrastructure and services. 

In other words, the new 5G security perimeter has widened and expanded far beyond what we are familiar with in LTE and 3G world.

A Call to Arms

A typical network security solution will include various security elements such as firewalls, DDoS protection, web application firewall, etc. Each system may require its own domain expertise when it comes to proper configuration and tuning. When a carrier network is under attack, dedicated expertise is required for handling changes and setting the proper mitigation action.

With the new reality of network slicing and highly distributed network functions carrier security teams will be overburdened unless they employ an automated, self-learning defense mechanism. With the current telecom carriers, the economics of an increase in security staff is not an option when moving toward 5G – it just doesn’t scale from a cost-perspective and it puts human engineers at a disadvantage to ever-increasing machine-based bot attacks. 

[You may also like: Here’s How Net Neutrality & Wearable Devices Can Impact 5G]

Automation as Table Stakes

A comprehensive security solution used across all network slices benefit from ease of management and required team expertise. Security vendors must design security products around the concept of self-learning, which is essentially threat detection not heavily dependent on pre-configured rules. 

Minimal setup and configuration is required in 5G to lower carrier security team effort around system operation.  An automated attack mitigation capability provides security teams with ‘peace of mind’ that all attack time actions taken care without manual intervention by security administrators, with strong visibility into network security threats across all network functions and slices.

2018 Mobile Carrier Ebook

Read “Creating a Secure Climate for your Customers” today.

Download Now

Attack Types & VectorsBotnetsSecurity

IoT Expands the Botnet Universe

March 6, 2019 — by Radware1

AdobeStock_175553664-960x607.jpg

In 2018, we witnessed the dramatic growth of IoT devices and a corresponding increase in the number of botnets and cyberattacks. Because IoT devices are always-on, rarely monitored and generally use off-the-shelf default passwords, they are low-hanging fruit for hackers looking for easy ways to build an army of malicious attackers. Every IoT device added to the network grows the hacker’s tool set.

Botnets comprised of vulnerable IoT devices, combined with widely available DDoS-as-a-Service tools and anonymous payment mechanisms, have pushed denial-of-service attacks to record-breaking volumes. At the same time, new domains such as cryptomining and credentials theft offer more opportunities for hacktivism.

Let’s look at some of the botnets and threats discovered and identified by Radware’s deception network in 2018.

JenX

A new botnet tried to deliver its dangerous payload to Radware’s newly deployed IoT honeypots. The honeypots registered multiple exploit attempts from distinct servers, all located in popular cloud hosting providers based in Europe. The botnet creators intended to sell 290Gbps DDoS attacks for only $20. Further investigation showed that the new bot used an atypical central scanning method through a handful of Linux virtual private servers (VPS) used to scan, exploit and load malware onto unsuspecting IoT victims. At the same time, the deception network also detected SYN scans originating from each of the exploited servers indicating that they were first performing a
mass scan before attempting to exploit the IoT devices, ensuring that ports 52869 and 37215 were open.

[You may also like: IoT Botnets on the Rise]

ADB Miner

A new piece of malware that takes advantage of Android-based devices exposing debug capabilities to the internet. It leverages scanning code from Mirai. When a remote host exposes its Android Debug Bridge (ADB) control port, any Android emulator on the internet has full install, start, reboot and root shell access without authentication.

Part of the malware includes Monero cryptocurrency miners (xmrig binaries), which are executing on the infected devices. Radware’s automated trend analysis algorithms detected a significant increase in activity against port 5555, both in the number of hits and in the number of distinct IPs. Port 5555 is one of the known ports used by TR069/064 exploits, such as those witnessed during the Mirai-based attack targeting Deutsche Telekom routers in November 2016. In this case, the payload delivered to the port was not SOAP/HTTP, but rather the ADB remote debugging protocol.

Satori.Dasan

Less than a week after ADB Miner, a third new botnet variant triggered a trend alert due to a significant increase in malicious activity over port 8080. Radware detected a jump in the infecting IPs from around 200 unique IPs per day to over 2,000 malicious unique IPs per day. Further investigation by the research team uncovered a new variant of the Satori botnet capable of aggressive scanning and exploitation of CVE-2017-18046 — Dasan Unauthenticated Remote Code Execution.

[You may also like: New Satori Botnet Variant Enslaves Thousands of Dasan WiFi Routers]

The rapidly growing botnet referred to as “Satori.Dasan” utilizes a highly effective wormlike scanning mechanism, where every infected host looks for more hosts to infect by performing aggressive scanning of random IP addresses and exclusively targeting port 8080. Once a suitable target is located, the infected bot notifies a C2 server, which immediately attempts to infect the new victim.

Memcached DDoS Attacks

A few weeks later, Radware’s system provided an alert on yet another new trend — an increase in activity on UDP port 11211. This trend notification correlated with several organizations publicly disclosing a trend in UDP-amplified DDoS attacks utilizing Memcached servers configured to accommodate UDP (in addition to the default TCP) without limitation. After the attack, CVE2018-1000115 was published to patch this vulnerability.

Memcached services are by design an internal service that allows unauthenticated access requiring no verification of source or identity. A Memcached amplified DDoS attack makes use of legitimate third-party Memcached servers to send attack traffic to a targeted victim by spoofing the request packet’s source IP with that of the victim’s IP. Memcached provided record-breaking amplification ratios of up to 52,000x.

[You may also like: Entering into the 1Tbps Era]

Hajime Expands to MikroTik RouterOS

Radware’s alert algorithms detected a huge spike in activity for TCP port 8291. After near-zero activity on that port for months, the deception network registered over 10,000 unique IPs hitting port 8291 in a single day. Port 8291 is related to a then-new botnet that exploits vulnerabilities in the MikroTik RouterOS operating system, allowing attackers to remotely execute code on the device.

The spreading mechanism was going beyond port 8291, which is used almost exclusively by MikroTik, and rapidly infecting other devices such as AirOS/Ubiquiti via ports: 80, 81, 82, 8080, 8081, 8082, 8089, 8181, 8880, utilizing known exploits and password-cracking attempts to speed up the propagation.

Satori IoT Botnet Worm Variant

Another interesting trend alert occurred on Saturday, June 15. Radware’s automated algorithms alerted to an upsurge of malicious activity scanning and infection of a variety of IoT devices by taking advantage of recently discovered exploits. The previously unseen payload was delivered by the infamous Satori botnet. The exponential increase in the number of attack sources spread all over the world, exceeding 2,500 attackers in a 24-hour period.

[You may also like: A Quick History of IoT Botnets]

Hakai

Radware’s automation algorithm monitored the rise of Hakai, which was first recorded in July. Hakai is a new botnet recently discovered by NewSky Security after lying dormant for a while. It started to infect D-Link, Huawei and Realtek routers. In addition to exploiting known vulnerabilities to infect the routers, it used a Telnet scanner to enslave Telnet-enabled devices with default credentials.

DemonBot

A new stray QBot variant going by the name of DemonBot joined the worldwide hunt for yellow elephant — Hadoop cluster — with the intention of conscripting them into an active DDoS botnet. Hadoop clusters are typically very capable, stable platforms that can individually account for much larger volumes of DDoS traffic compared to IoT devices. DemonBot extends the traditional abuse of IoT platforms for DDoS by adding very capable big data cloud servers. The DDoS attack vectors supported by DemonBot are STD, UDP and TCP floods.

Using a Hadoop YARN (Yet-Another-Resource-Negotiator) unauthenticated remote command execution, DemonBot spreads only via central servers and does not expose the wormlike behavior exhibited by Mirai-based bots. By the end of October, Radware tracked over 70 active exploit servers that are spreading malware
and exploiting YARN servers at an aggregated rate of over one million exploits per day.

[You may also like: Hadoop YARN: An Assessment of the Attack Surface and Its Exploits]

YARN allows multiple data processing engines to handle data stored in a single Hadoop platform. DemonBot took advantage of YARN’s REST API publicly exposed by over 1,000 cloud servers worldwide. DemonBot effectively harnesses the Hadoop clusters in order to generate a DDoS botnet powered by cloud infrastructure.

Always on the Hunt

In 2018, Radware’s deception network launched its first automated trend-detection steps and proved its ability to identify emerging threats early on and to distribute valuable data to the Radware mitigation devices, enabling them to effectively mitigate infections, scanners and attackers. One of the most difficult aspects in automated anomaly detection is to filter out the massive noise and identify the trends that indicate real issues.

In 2019, the deception network will continue to evolve and learn and expand its horizons, taking the next steps in real-time automated detection and mitigation.

Read “The Trust Factor: Cybersecurity’s Role in Sustaining Business Momentum” to learn more.

Download Now

Mobile SecurityService Provider

Here’s How Carriers Can Differentiate Their 5G Offerings

February 28, 2019 — by Mike O'Malley0

5g-960x636.jpg

Much of the buzz surrounding this year’s Mobile World Congress has focused on “cool” tech innovations. There are self-driving cars, IoT-enhanced bee hives, smart textiles that monitor your health, realistic human chatbots, AI robots, and so forth. But, one piece of news that has flown relatively under the radar is the pending collaboration between carriers for 5G implementation.

A Team Effort

As Bloomberg reported, carriers from Vodafone Group Plc, Telecom Italia SpA and Telefonica SA are willing to call “a partial truce” to help each other build 5G infrastructure in an attempt “to avoid duplication and make scarce resources go further.”

Sounds great (who doesn’t love a solid team effort?!)…except for one thing: the pesky issue of competing for revenue streams in an industry fraught with financial challenges. As the Bloomberg article pointed out, “by creating more interdependent and overlapping networks, the risk is that each will find it harder to differentiate their offering.”

[You may also like: Securing the Customer Experience for 5G and IoT]

While this is certainly a valid concern, there is an obvious solution: If carriers are looking for differentiation in a collaborative environment, they need to leverage security as a competitive advantage.

Security as a Selling Point

As MWC19 is showing us in no uncertain terms, IoT devices—from diabetic smart socks to dairy milking monitors—are the way of the future. And they will largely be powered by 5G networks, beginning as early as this year.

Smart boot and sock monitor blood sugar, pulse rate, temperature and more for diabetics.

Which is all to say, although carriers are nervous about setting themselves apart while they work in partnership to build 5G infrastructure, there’s a huge opportunity to differentiate themselves by claiming ownership of IoT device security.

[You may also like: Don’t Be A “Dumb” Carrier]

As I recently wrote, IoT devices are especially vulnerable because of manufacturers’ priority to maintain low costs, rather than spending more on additional security features. If mobile service providers create a secure environment, they can establish a competitive advantage and reap financial rewards.

Indeed, best-of-breed security opens the possibility for capturing new revenue streams; mobile IoT businesses will pay an additional service premium for the peace of mind that their devices will be secure and can maintain 100% availability. And if a competing carrier suffers a data breach, for example, you can expect their customer attrition to become your win.

My words of advice: Collaborate. But do so while holding an ace—security—in your back pocket.

2018 Mobile Carrier Ebook

Read “Creating a Secure Climate for your Customers” today.

Download Now

Mobile SecurityService Provider

Don’t Be A “Dumb” Carrier

February 12, 2019 — by Mike O'Malley0

dumbcarrier-960x540.jpg

By next year, it is estimated that there will be 20.4 billion IoT devices, with businesses accounting for roughly 7.6 billion of them. While these devices are the next wireless innovation to improve productivity in an ever-connected world, they also represent nearly 8 billion opportunities for breaches or attacks.

In fact, 97% of companies believe IoT devices could wreak havoc on their organizations, and with good reason. Security flaws can leave millions of devices vulnerable, creating pathways for cyber criminals to exfiltrate data—or worse. For example, a July 2018 report disclosed that nearly 500 million IoT devices were susceptible to cyberattacks at businesses worldwide because of a decade old web exploit.

A New Attack Environment

In other words, just because these devices are new and innovative doesn’t mean your security is, too. To further complicate matters, 5G networks will begin to roll out in 2020, creating a new atmosphere for mobile network attacks. Hackers will be able to exploit IoT devices and leverage the speed, low latency and high capacity of 5G networks to launch unprecedented volumes of sophisticated attacks, ranging from standard IoT attacks to burst attacks, and even smartphone infections and mobile operating system malware.

Scary stuff.

[You may also like: IoT, 5G Networks and Cybersecurity: A New Atmosphere for Mobile Network Attacks]

So, who is responsible for securing these billions of devices to ensure businesses and consumers alike are protected?  Well, right now, nobody. And there’s no clear agreement on what entity is—or should be—held accountable. According to Radware’s 2017-2018 Global Application & Network Security Report, 34% believe the device manufacturer is responsible, 11% believe service providers are, 21% think it falls to the private consumer, and 35% believe business organizations should be liable.

Ownership Is Opportunity

Indeed, no one group is raising its hand to claim ownership of IoT device security. But if service providers want to protect their networks and customers, they should jump at the chance to take the lead here. While service providers technically don’t own the emerging security issues, it is ultimately the operators who are best positioned to deal with and mitigate attack traffic. While many may view this as an operational cost, it is, in actuality, a business opportunity.

In fact, the Japanese government is so concerned about a large scale IoT attack disrupting the 2020 Tokyo Olympics, they just passed a law empowering the government to intentionally identify and hack vulnerable IoT devices.  And who is the government asking to secure the list of devices they find vulnerable? Consumers? Businesses? Manufacturers?  No, No, and NO.  They are asking service providers to secure these devices from attacks.

[You may also like: IoT, 5G Networks and Cybersecurity: Safeguarding 5G Networks with Automation and AI]

Think about it: Every device connected to a network is another potential security weakness. And as we’ve written about previously, IoT devices are especially vulnerable because of manufacturers’ priority to maintain low costs, rather than spending more on additional security features. If mobile service providers create a secure environment that satisfies the protection of customer data and devices, they can establish a competitive advantage and reap financial rewards.

From Opportunity to Rewards

This translates to the potential for capturing new revenue streams. If your mobile network is more secure than your competitors’, it stands to reason that their customer attrition becomes your win. And mobile IoT businesses will pay an additional service premium for the knowledge that their IoT devices won’t be compromised and can maintain 100% availability.

[You may also like: The Rise of 5G Networks]

What’s more, service providers need to be mindful of history repeating itself. After providers lost the war with Apple and Google to control apps (and their associated revenue), they earned the unfortunate reputation of being “dumb pipes.” Conversely, Apple and Google were heralded for capturing all the value of the explosion of mobile data apps. Apple now sits with twice the valuation as AT&T and Verizon, COMBINED.  Now, as we are on the precipice of a similar explosion of IoT apps that enterprises will buy, the question again arises over whether service providers will just sell “dumb pipes” or whether they will get involved in the value chain.

A word to the wise: Don’t be a “dumb” carrier. Be smart.  Secure the customer experience and reap the benefits.

2018 Mobile Carrier Ebook

Read “Creating a Secure Climate for your Customers” today.

Download Now

Attack Types & VectorsDDoSDDoS Attacks

Top 3 Cyberattacks Targeting Proxy Servers

January 16, 2019 — by Daniel Smith0

Proxy-960x540.jpg

Today, many organizations are now realizing that DDoS defense is critical to maintaining an exceptional customer experience. Why? Because nothing diminishes load times or impacts the end user’s experience more than a cyberattack.

As a facilitator of access to content and networks, proxy servers have become a focal point for those seeking to cause grief to organizations via cyberattacks due to the fallout a successful assault can have.

Attacking the CDN Proxy

New vulnerabilities in content delivery networks (CDNs) have left many wondering if the networks themselves are vulnerable to a wide variety of cyberattacks. Here are five cyber “blind spots” that are often attacked – and how to mitigate the risks:

Increase in dynamic content attacks. Attackers have discovered that treatment of dynamic content requests is a major blind spot in CDNs. Since the dynamic content is not stored on CDN servers, all requests for dynamic content are sent to the origin’s servers. Attackers are taking advantage of this behavior to generate attack traffic that contains random parameters in HTTP GET requests. CDN servers immediately redirect this attack traffic to the origin—expecting the origin’s server to handle the requests. However, in many cases the origin’s servers do not have the capacity to handle all those attack requests and fail to provide online services to legitimate users. That creates a denial-of-service situation. Many CDNs can limit the number of dynamic requests to the server under attack. This means they cannot distinguish attackers from legitimate users and the rate limit will result in legitimate users being blocked.

SSL-based DDoS attacks. SSL-based DDoS attacks leverage this cryptographic protocol to target the victim’s online services. These attacks are easy to launch and difficult to mitigate, making them a hacker favorite. To detect and mitigate SSL-based attacks, CDN servers must first decrypt the traffic using the customer’s SSL keys. If the customer is not willing to provide the SSL keys to its CDN provider, then the SSL attack traffic is redirected to the customer’s origin. That leaves the customer vulnerable to SSL attacks. Such attacks that hit the customer’s origin can easily take down the secured online service.

[You may also like: SSL Attacks – When Hackers Use Security Against You]

During DDoS attacks, when web application firewall (WAF) technologies are involved, CDNs also have a significant scalability weakness in terms of how many SSL connections per second they can handle. Serious latency issues can arise. PCI and other security compliance issues are also a problem because they limit the data centers that can be used to service the customer. This can increase latency and cause audit issues.

Keep in mind these problems are exacerbated with the massive migration from RSA algorithms to ECC and DH-based algorithms.

Attacks on non-CDN services. CDN services are often offered only for HTTP/S and DNS applications.  Other online services and applications in the customer’s data center, such as VoIP, mail, FTP and proprietary protocols, are not served by the CDN. Therefore, traffic to those applications is not routed through the CDN. Attackers are taking advantage of this blind spot and launching attacks on such applications. They are hitting the customer’s origin with large-scale attacks that threaten to saturate the Internet pipe of the customer. All the applications at the customer’s origin become unavailable to legitimate users once the internet pipe is saturated, including ones served by the CDN.

[You may also like: CDN Security is NOT Enough for Today]

Direct IP attacks. Even applications that are served by a CDN can be attacked once attackers launch a direct hit on the IP address of the web servers at the customer’s data center. These can be network-based flood attacks such as UDP floods or ICMP floods that will not be routed through CDN services and will directly hit the customer’s servers. Such volumetric network attacks can saturate the Internet pipe. That results in degradation to application and online services, including those served by the CDN.

Web application attacks. CDN protection from threats is limited and exposes web applications of the customer to data leakage and theft and other threats that are common with web applications. Most CDN- based WAF capabilities are minimal, covering only a basic set of predefined signatures and rules. Many of the CDN-based WAFs do not learn HTTP parameters and do not create positive security rules. Therefore, these WAFs cannot protect from zero-day attacks and known threats. For companies that do provide tuning for the web applications in their WAF, the cost is extremely high to get this level of protection. In addition to the significant blind spots identified, most CDN security services are simply not responsive enough, resulting in security configurations that take hours to manually deploy. Security services are using technologies (e.g., rate limit) that have proven inefficient in recent years and lack capabilities such as network behavioral analysis, challenge-response mechanisms and more.

[You may also like: Are Your Applications Secure?]

Finding the Watering Holes

Waterhole attack vectors are all about finding the weakest link in a technology chain. These attacks target often forgotten, overlooked or not intellectually attended to automated processes. They can lead to unbelievable devastation. What follows is a list of sample watering hole targets:

  • App stores
  • Security update services
  • Domain name services
  • Public code repositories to build websites
  • Webanalytics platforms
  • Identity and access single sign-on platforms
  • Open source code commonly used by vendors
  • Third-party vendors that participate in the website

The DDoS attack on Dyn in 2016 has been the best example of the water-holing vector technique to date. However, we believe this vector will gain momentum heading into 2018 and 2019 as automation begins to pervade every aspect of our life.

Attacking from the Side

In many ways, side channels are the most obscure and obfuscated attack vectors. This technique attacks the integrity of a company’s site through a variety of tactics:

  • DDoS the company’s analytics provider
  • Brute-force attack against all users or against all of the site’s third-party companies
  • Port the admin’s phone and steal login information
  • Massive load on “page dotting”
  • Large botnets to “learn” ins and outs of a site

Read the “2018 C-Suite Perspectives: Trends in the Cyberattack Landscape, Security Threats and Business Impacts” to learn more.

Download Now

Application SecurityAttack MitigationAttack Types & Vectors

How Cyberattacks Directly Impact Your Brand: New Radware Report

January 15, 2019 — by Ben Zilberman0

BinaryCodeEncryption-002-960x600.jpg

Whether you’re an executive or practitioner, brimming with business acumen or tech savviness, your job is to preserve and grow your company’s brand. Brand equity relies heavily on customer trust, which can take years to build and only moments to demolish. 2018’s cyber threat landscape demonstrates this clearly; the delicate relationship between organizations and their customers is in hackers’ cross hairs and suffers during a successful cyberattack. Make no mistake: Leaders who undervalue customer trust–who do not secure an optimized customer experience or adequately safeguard sensitive data–will feel the sting in their balance sheet, brand reputation and even their job security.

Radware’s 2018-2019 Global Application and Network Security report builds upon a worldwide industry survey encompassing 790 business and security executives and professionals from different countries, industries and company sizes. It also features original Radware threat research, including an analysis of emerging trends in both defensive and offensive technologies. Here, I discuss key takeaways.

Repercussions of Compromising Customer Trust

Without question, cyberattacks are a viable threat to operating expenditures (OPEX). This past year alone, the average estimated cost of an attack grew by 52% and now exceeds $1 million (the number of estimations above $1 million increased 60%). For those organizations that formalized a real calculation process rather than merely estimate the cost, that number is even higher, averaging $1.67 million.

Despite these mounting costs, three in four have no formalized procedure to assess the business impact of a cyberattack against their organization. This becomes particularly troubling when you consider that most organizations have experienced some type of attack within the course of a year (only 7% of respondents claim not to have experienced an attack at all), with 21% reporting daily attacks, a significant rise from 13% last year.

There is quite a range in cost evaluation across different verticals. Those who report the highest damage are retail and high-tech, while education stands out with its extremely low financial impact estimation:

Repercussions can vary: 43% report a negative customer experience, 37% suffered brand reputation loss and one in four lost customers. The most common consequence was loss of productivity, reported by 54% of survey respondents. For small-to-medium sized businesses, the outcome can be particularly severe, as these organizations typically lack sufficient protection measures and know-how.

It would behoove all businesses, regardless of size, to consider the following:

  • Direct costs: Extended labor, investigations, audits, software patches development, etc.
  • Indirect costs: Crisis management, fines, customer compensation, legal expenses, share value
  • Prevention: Emergency response and disaster recovery plans, hardening endpoints, servers and cloud workloads

Risk Exposure Grows with Multi-Dimensional Complexity

As the cost of cyberattacks grow, so does the complexity. Information networks today are amorphic. In public clouds, they undergo a constant metamorphose, where instances of software entities and components are created, run and disappear. We are marching towards the no-visibility era, and as complexity grows it will become harder for business executives to analyze potential risks.

The increase in complexity immediately translates to a larger attack surface, or in other words, a greater risk exposure. DevOps organizations benefit from advanced automation tools that set up environments in seconds, allocate necessary resources, provision and integrate with each other through REST APIs, providing a faster time to market for application services at a minimal human intervention. However, these tools are processing sensitive data and cannot defend themselves from attacks.

Protect your Customer Experience

The report found that the primary goal of cyber-attacks is service disruption, followed by data theft. Cyber criminals understand that service disruptions result in a negative customer experience, and to this end, they utilize a broad set of techniques. Common methods include bursts of high traffic volume, usage of encrypted traffic to overwhelm security solutions’ resource consumption, and crypto-jacking that reduces the productivity of servers and endpoints by enslaving their CPUs for the sake of mining cryptocurrencies. Indeed, 44% of organizations surveyed suffered either ransom attacks or crypto-mining by cyber criminals looking for easy profits.

What’s more, attack tools became more effective in the past year; the number of outages grew by 15% and more than half saw slowdowns in productivity. Application layer attacks—which cause the most harm—continue to be the preferred vector for DDoSers over the network layer. It naturally follows, then, that 34% view application vulnerabilities as the biggest threat in 2019.

Essential Protection Strategies

Businesses understand the seriousness of the changing threat landscape and are taking steps to protect their digital assets. However, some tasks – such as protecting a growing number of cloud workloads, or discerning a malicious bot from a legitimate one – require leveling the defense up. Security solutions must support and enable the business processes, and as such, should be dynamic, elastic and automated.

Analyzing the 2018 threat landscape, Radware recommends the following essential security solution capabilities:

  1. Machine Learning: As hackers leverage advanced tools, organizations must minimize false positive calls in order to optimize the customer experience. This can be achieved by machine-learning capabilities that analyze big data samples for maximum accuracy (nearly half of survey respondents point at security as the driver to explore machine-learning based technologies).
  2. Automation: When so many processes are automated, the protected objects constantly change, and attackers quickly change lanes trying different vectors every time. As such, a security solution must be able to immediately detect and mitigate a threat. Solutions based on machine learning should be able to auto tune security policies.
  3. Real Time Intelligence: Cyber delinquents can disguise themselves in many forms. Compromised devices sometimes make legitimate requests, while other times they are malicious. Machines coming behind CDN or NAT can not be blocked based on IP reputation and generally, static heuristics are becoming useless. Instead, actionable, accurate real time information can reveal malicious activity as it emerges and protect businesses and their customers – especially when relying on analysis and qualifications of events from multiple sources.
  4. Security Experts: Keep human supervision for the moments when the pain is real. Human intervention is required in advanced attacks or when the learning process requires tuning. Because not every organization can maintain the know-how in-house at all times, having an expert from a trusted partner or a security vendor on-call is a good idea.

It is critical for organizations to incorporate cybersecurity into their long-term growth plans. Securing digital assets can no longer be delegated solely to the IT department. Rather, security planning needs to be infused into new product and service offerings, security, development plans and new business initiatives. CEOs and executive teams must lead the way in setting the tone and invest in securing their customers’ experience and trust.

Read “The Trust Factor: Cybersecurity’s Role in Sustaining Business Momentum” to learn more.

Download Now

HacksSecurity

2018 In Review: Schools Under Attack

December 19, 2018 — by Daniel Smith1

education-under-attack-960x561.jpg

As adoption of education technologies expanded in 2018, school networks were increasingly targeted by ransomware, data theft and denial of service attacks; the FBI even issued an alert warning this September as schools reconvened after summer break.

Every school year, new students join schools’ networks, increasing its risk of exposure. Combined with the growing complexity of connected devices on a school’s network and the use of open-source learning management systems (like Blackboard and Moodle), points of failure multiply. While technology can be a wonderful learning aid and time saver for the education sector, an insecure, compromised network will create delays and incur costs that can negate the benefits of new digital services.

The Vulnerabilities

Some of the biggest adversaries facing school networks are students and the devices they bring onto campus. For example, students attending college typically bring a number of internet-connected devices with them, including personal computers, tablets, cell phones and gaming consoles, all of which connect to their school’s network and present a large range of potential vulnerabilities. What’s more, the activities that some students engage in, such as online gaming and posting and/or trolling on forums, can create additional cybersecurity risks.

In an education environment, attacks–which tend to spike at the beginning of every school year–range from flooding the network to stealing personal data, the effects of which can be long-lasting. Per the aforementioned FBI alert, cyber actors exploited school IT systems by hacking into multiple school district servers across the United States in late 2017, where they “accessed student contact information, education plans, homework assignments, medical records, and counselor reports, and then used that information to contact, extort, and threaten students with physical violence and release of their personal information.” Students have also been known to DoS networks to game their school’s registration system or attack web portals used to submit assignments in an attempt to buy more time.

[You may also like: So easy, a child can do it: 15% of Americans think a grade-schooler can hack a school]

Plus, there are countless IoT devices on any given school network just waiting for a curious student to poke. This year we saw the arrest and trial of Paras Jha, former Rutgers student and co-author of the IoT botnet Mirai, who did just that. Jha pleaded guilty to not only creating the malware, but also to click fraud and targeting Rutgers University with the handle ExFocus. This account harassed the school on multiple occasions and caused long and wide-spread outages via DDoS attacks from his botnet.

What’s more, some higher education networks are prime targets of nation states who are looking to exfiltrate personal identifiable data, research material or other crucial or intellectual property found on a college network.

Why Schools?

As it turns out, school networks are more vulnerable than most other types of organizations. On top of an increased surface attack area, schools are often faced with budgetary restraints preventing them from making necessary security upgrades.

[You may also like: School Networks Getting Hacked – Is it the Students’ Fault?]

Schools’ cybersecurity budgets are 50 percent lower than those in financial or government organizations, and 70 percent lower than in telecom and retail. Of course, that may be because schools estimate the cost of an attack at only $200,000–a fraction of the $500,000 expected by financial firms, $800,000 by retailers, and the $1 million price tag foreseen by health care, government, and tech organizations. But the relatively low estimated cost of an attack doesn’t mean attacks on school networks are any less disruptive. Nearly one-third (31 percent) of attacks against schools are from angry users, a percentage far higher than in other industries. Some 57 percent of schools are hit with malware, the same percentage are victims of social engineering, and 46 percent have experienced ransom attacks.

And yet, 44 percent of schools don’t have an emergency response plan. Hopefully 2019 will be the year schools change that.

Read “Radware’s 2018 Web Application Security Report” to learn more.

Download Now

Mobile SecuritySecurity

Cybersecurity for the Business Traveler: A Tale of Two Internets

November 27, 2018 — by David Hobbs2

travel-960x506.jpg

Many of us travel for work, and there are several factors we take into consideration when we do. Finding the best flights, hotels and transportation to fit in the guidelines of compliance is the first set of hurdles, but the second can be a bit trickier: Trusting your selected location. Most hotels do not advertise their physical security details, let alone any cybersecurity efforts.

I recently visited New Delhi, India, where I stayed at a hotel in the Diplomatic Enclave. Being extremely security conscious, I did a test on the connection from the hotel and found there was little-to-no protection on the wi-fi network. This hotel touts its appeal to elite guests, including diplomats and businessmen on official business. But if it doesn’t offer robust security on its network, how can it protect our records and personal data?  What kind of protection could I expect if a hacking group decided to target guests?

[You may also like: Protecting Sensitive Data: A Black Swan Never Truly Sits Still]

If I had to guess, most hotel guests—whether they’re traveling for business or pleasure—don’t spend much time or energy considering the security implications of their new, temporary wi-fi access. But they should.

More and more, we are seeing hacking groups target high-profile travelers. For example, the Fin7 group stole over $1 billion with aggressive hacking techniques aimed at hotels and their guests. And in 2017, an espionage group known as APT28 sought to steal password credentials from Western government and business travelers using hotel wi-fi networks.

A Tale of Two Internets

To address cybersecurity concerns—while also setting themselves apart with a competitive advantage—conference centers, hotels and other watering holes for business travelers could easily offer two connectivity options for guests:

  • Secure Internet: With this option, the hotel would provide basic levels of security monitoring, from virus connections to command and control infrastructure, and look for rogue attackers on the network. It could also alert guests to potential attacks when they log on and could make a “best effort.”
  • Wide Open Internet: In this tier, guests could access high speed internet to do as they please, without rigorous security checks in place. This is the way most hotels, convention centers and other public wi-fi networks work today.

A two-tiered approach is a win-win for both guests and hotels. If hotels offer multiple rates for wi-fi packages, business travelers may pay more to ensure their sensitive company data is protected, thereby helping to cover cybersecurity-related expenses. And guests would have the choice to decide which package best suits their security needs—a natural byproduct of which is consumer education, albeit brief, on the existence of network vulnerabilities and the need for cybersecurity. After all, guests may not have even considered the possibility of security breaches in a hotel’s wi-fi, but evaluating different Internet options would, by default, change that.

[You may also like: Protecting Sensitive Data: The Death of an SMB]

Once your average traveler is aware of the potential for security breaches during hotel stays, the sky’s the limit! Imagine a cultural shift in which hotels were encouraged to promote their cybersecurity initiatives and guests could rate them online in travel site reviews? Secure hotel wi-fi could become a standard amenity and a selling point for travelers.

I, for one, would gladly select a wi-fi option that offered malware alerts, stopped DDoS attacks and proactively looked for known attacks and vulnerabilities (while still using a VPN, of course). Wouldn’t it be better if we could surf a network more secure than the wide open Internet?

Read the “2018 C-Suite Perspectives: Trends in the Cyberattack Landscape, Security Threats and Business Impacts” to learn more.

Download Now

SecurityService Provider

IoT, 5G Networks and Cybersecurity: Safeguarding 5G Networks with Automation and AI

September 18, 2018 — by Louis Scialabba2

iot-5g-networks-cybersecurity-blog-img-960x519.jpg

By 2020, Gartner says there will be 20.4 billion IoT devices. That rounds out to almost three devices per person on earth. As a result, IoT devices will show up in just about every aspect of daily life. While IoT devices promise benefits such as improved productivity, longevity and enjoyment, they also open a Pandora’s box of security issues for mobile service providers.

This flood of IoT devices, combined with the onset of 5G networks to support it, is creating an atmosphere ripe for mobile network attacks.  This threat landscape requires mobile service providers to alter their approach to network security or suffer dire consequences. The same old tools are no longer enough.

[You might also like: A New Atmosphere for Mobile Network Attacks]

Battle Increased Complexity with Automation

For years, security teams have struggled with the proliferation of data from dozens of security products, outpacing their ability to process it. This same problem applies to mobile service providers regarding the aforementioned issues surrounding 5G and IoT devices.

Security threats and anomalies within mobile network traffic are growing faster than security teams can detect and react to them. All the security threats we see now on enterprise networks are a harbinger of what’s to come on 5G networks. The introduction of 5G adds significant complexities to mobile networks that require next-generation security solutions.

Automation is key to better identification and mitigation of these threats for mobile service providers. Machine-learning based DDoS mitigation solutions enable real-time detection and mitigation of DDoS attacks. Through behavioral analysis, bad traffic can then be identified and automatically blocked before any damage is done.

[You might also like: The Rise of 5G Networks]

Automation Across the Security Architecture

For mobile service providers, automation must expand across all layers of the security architecture. First and foremost, the network must be leveraged as a sensor, a digital cyberattack tripwire. In 5G networks, network elements are distributed at the edge and virtualized. The network’s endpoints can be used as detection spots to send messages back to a centralized control plane (CCP).

The CCP serves as the brain of the network, compiling all the inputs from its telemetry feeds to deploy the best way to apply mitigation policies.

The myriad amount of CCP data can be put to work via Big Data. As 5G pushes network functions and data to the cloud, there’s an opportunity to use this information to better protect against attacks with the help of artificial intelligence (AI) and deep learning.

This is where the “big” in “big data” comes into play. Because 5G virtual devices live on the edge of the network in small appliances, there isn’t enough computing power available to identify evolving attack traffic from within. But by feeding traffic through an extra layer of protection at large data centers, it is possible to efficiently compile all the data to identify attacks.

Large data centers can be prohibitively expensive to house and maintain. Ideally, these data centers are housed and maintained by the mobile service provider’s DDoS mitigation vendor, which leverages its network of cloud-based scrubbing centers (and the massive volumes of threat intelligence it collects) to process this information and automatically feed it back to the mobile service provider.

A Game of Probability

In the end, IoT and 5G security will come down to being a game of probability, however, automation and AI stack the odds heavily in favor of mobile service providers.

The new network technology has the speed and capacity to enable AI with data from 50 billion connected devices. AI requires huge amounts of data to sift through and create neural networks where anomalies can be detected, with emphasis on good data. Bad or poisoned data will lead to biased models and false negatives. The more good data, the better the outcomes in this high-stakes game of probability.

As all this traffic is fed through the scrubbing centers at data centers around the world, AI can help inform security algorithms to detect protocol anomalies and flag issues. The near real-time process is complicated. Like an FBI watch list, a register of attack information goes to a mobile network’s control plane. The result is a threat intelligence feed that uses the power of machine learning to identify and prevent attacks.

The best place to populate AI and deep learning systems is from crowdsourcing and global communities where large numbers of enterprises and networks contribute data. Bad data will find its way in, but the good data will significantly outnumber the bad data to make deep learning possible.

Ultimately, the threats from botnets, web scraping, and IoT zombies is dynamic and increasingly complex. With 5G on the horizon, it’s critical that mobile service providers are proactive and make plans now to protect their networks against evolving security threats by turning to machine learning and AI.

2018 Mobile Carrier Ebook

Read “Creating a Secure Climate for your Customers” today.

Download Now

BotnetsMobile DataMobile SecuritySecurityService Provider

IoT, 5G Networks and Cybersecurity: The Rise of 5G Networks

August 16, 2018 — by Louis Scialabba2

rise-5g-networks-iot-cybersecurity-960x640.jpg

Smartphones today have more computing power than the computers that guided the Apollo 11 moon landing. From its original positioning of luxury, mobile devices have become a necessity in numerous societies across the globe.

With recent innovations in mobile payment such as Apple Pay, Android Pay, and investments in cryptocurrency, cyberattacks have become especially more frequent with the intent of financial gain. In the past year alone, hackers have been able to mobilize and weaponize unsuspected devices to launch severe network attacks. Working with a North American service provider, Radware investigations found that about 30% of wireless network traffic originated from mobile devices launching DDoS attacks.

Each generation of network technology comes with its own set of security challenges.

How Did We Get Here?

Starting in the 1990s, the evolution of 2G networks enabled service providers the opportunity to dip their toes in the water that is security issues, where their sole security challenge was the protection of voice calls. This was resolved through call encryption and the development of SIM cards.

Next came the generation of 3G technology where the universal objective (at the time) for a more concrete and secure network was accomplished. 3G networks became renowned for the ability to provide faster speeds and access to the internet. In addition, the new technology provided better security with encryption for voice calls and data traffic, minimizing the impact and damage levels of data payload theft and rogue networks.

Fast forward to today. The era of 4G technology has evolved the mobile ecosystem to what is now a mobile universe that fits into our pockets. Delivering significantly faster speeds, 4G networks also exposed the opportunities for attackers to exploit susceptible devices for similarly quick and massive DDoS attacks. More direct cyberattacks via the access of users’ sensitive data also emerged – and are still being tackled – such as identity theft, ransomware, and cryptocurrency-related criminal activity.

The New Age

2020 is the start of a massive rollout of 5G networks, making security concerns more challenging. The expansion of 5G technology comes with promises of outstanding speeds, paralleling with landline connection speeds. The foundation of the up-and-coming network is traffic distribution via cloud servers. While greatly benefitting 5G users, this will also allow attackers to equally reap the benefits. Without the proper security elements in place, attackers can wreak havoc with their now broadened horizons of potential chaos.

What’s Next?

In the 5G universe, hackers can simply attach themselves to a 5G connection remotely and collaborate with other servers to launch attacks of a whole new level. Service providers will have to be more preemptive with their defenses in this new age of technology. Because of the instantaneous speeds and low lag time, they’re in the optimal position to defend against cyberattacks before attackers can reach the depths of the cloud server.

2018 Mobile Carrier Ebook

Discover more about what the 5G generation will bring, both benefits and challenges, in Radware’s e-book “Creating a Secure Climate for your Customers” today.

Download Now