
Creating a Safe Environment
for Under-Protected APIs

WHITE PAPER

2RADWARE WEB AND API SECURITY

TABLE OF CONTENTS

	Ð Background ... 3

What are APIs? .. 3

	Ð APIs in Modern Applications ... 4

Rapid FaaS Evolution is Driving API Adoption ... 5

	Ð Security Concerns of Distributed API Architecture .. 5

The API Security Visibility Problem .. 5

API Security Risks and Vulnerabilities ... 6

	Ð Designing a Secured API Environment .. 8

Inline API Security Measures ... 8

Radware API Security Technology ... 9

	Ð References... 10

3RADWARE WEB AND API SECURITY

 Background
As the popularity of applications continues to grow, the adoption of application programming interfaces (APIs) is
increasing. APIs enable applications to interoperate with other services by integrating different clients and
applications across multiple services. They save time and facilitate the flexible development of microservices
architecture apps, agile development methodologies and continuous delivery.

While APIs bring tremendous benefits, they also introduce new security risks, including service disruption and data
theft. Many APIs process sensitive personally identifiable information (PII). Additionally, known application security
risks with HTTP/S apps are as relevant for APIs as they are for web applications. Communication with APIs usually
follows known structures and protocols. The most common protocol is REST/JSON, which has a schema format
definition called OpenAPI.

Because threats vary, API security requires a combination of access controls (such as authentication and
authorization mechanisms), injection prevention, bot management and DoS mitigation. In addition, hackers may try
some API-specific attacks such as using invalid schemas, parameter tampering or token manipulations. So, in
addition to support for OpenAPI, API security should also address unknown, undocumented APIs.

What are APIs?
APIs are a set of tools and protocols used to develop application software. These interfaces incorporate a
predefined request–response message system that exposes reliable content and operation negotiation. The
most common API protocol in modern architectures is REST. Other protocols have recently emerged— such as
gRPC — for example, to support developments and the delivery of the Kubernetes architecture.

Documented vs. Undocumented APIs
APIs can be divided into two types:

Documented APIs — where the API provider includes documentation on how to use the APIs through a
definition language. Currently, the most common definition language is Open API Specification (OAS), also
referred to as Swagger (though this is the name of a tool rather than a format). Other formats such as SOAP and
RAML are also available, but their adoption is significantly lower and declining.

	Ð Undocumented APIs – How to use the APIs is not formally documented in a definition language.

Emails/Phone/Address

User credentials

Tokens/Hashes/Cookies

Payment info

ID/Social Security number/Social insurance numbers

Mediacl records

Don’t know

76

71

56

52

40

9

4

Figure 1: Examples of various operations comprising the application delivery service

4RADWARE WEB AND API SECURITY

 APIs in Modern Applications
APIs are used in a variety of modern applications and the number of use cases is continuously growing. The
most common examples are:

	Ð Web APIs, mostly in single-page applications

	Ð Mobile applications

	Ð Embedding public and third-party APIs as external services into an existing application (e.g., Google Maps APIs).

DevOps environments — with the ever-increasing demand for continuous delivery — require complete process
automation utilizing APIs across the board:

	Ð Service provisioning and management (e.g., AWS API)

	Ð Platform management apps

	Ð Continuous delivery process automation

REST - OpenAPI/Swagger

JSON Schema

REST - Not OpenAPI/Swagger

gRPC

GraphQL

WSDL

AsyncAPI

WADL

We are not using an API standard

RAML

API Blueprint

82
42

21
20

19
7

5
5
5

4
4

Figure 2 - Common standards for defining APIs, The State of API 2020, SMARTBEAR (n=3,536)

Mobile AppsEvent Driven Web Apps

Machine to Machine Faas / Serverless

IoT Devices

Fairly
Static

Frequently
Changing

Figure 3 - The API Economy and use cases

5RADWARE WEB AND API SECURITY

Rapid FaaS Evolution is Driving API Adoption
Serverless architecture — or FaaS (Functions as a Service) — offers a model where the operational unit is a set of
functions rather than a web server. These functions may be internal for East-West interfaces or an API exposed to
the client-side North-South interfaces, which may invoke these APIs upon relevant client-side events.

In a FaaS architecture, the management of functions is greater in complexity than just managing lasting virtual
machines. The function containers are created upon request and may disappear immediately after being used. This
approach simplifies the development process and dramatically reduces operating expenses (OPEX). It is important to
state that APIs are not tightly coupled with FaaS and are widely used in other architectures and with web applications.

 Security Concerns of Distributed API Architecture
The API Security Visibility Problem
API vulnerabilities are hard to monitor and do not stand out. Traditional application security assessment tools do
not work well with APIs or are simply irrelevant. For example, Dynamic Application Security Testing (DAST) and
application scanning tools cannot invoke the API because they cannot generate well-formed requests, even if
the tools know whether the request body should be a JSON or an XML.

Similarly, Static Application Security Testing (SAST) tools are limited in their ability to scan API code, as is typical
in an API. Instead, third-party frameworks and libraries use custom methods to read a JSON or XML document
from the body of the HTTP request, then parse it and pass the data into the API code. These methods are
different from one another and are subject to changes, limiting the success rate of static tools.

When planning for an API security infrastructure, authentication and authorization must be taken into account,
yet these are often not addressed properly in many API security solutions.

“Since Application Programming Interfaces are mission critical and involve crucial business functionalities
and processes, API security has become a major concern and challenge for organizations.”

- Open Web Application Security Project® (OWASP) Top 10 Web Application Security Threats, 2019

AUTOMATION DISCOVER & MONITOR VISIBILITY & SUPERVISION

 � API to Manage Policies
 � Import and Enforce OpenAPI
 � Import and Enforce API Catalogue
 � Extract Secured APIs

 � API Discovery
 � Categorization
 � Analysis

 � Logo of Violations
 � Attack Reports
 � Per-API access count
 � Traffic Volume

Figure 3 – Operational challenges in API security

6RADWARE WEB AND API SECURITY

API Security Risks and Vulnerabilities
APIs are vulnerable to all types of attacks and threats against web applications. Most of the APIs are REST APIs
with JSON bodies (REST-JSON), which run on top of the HTTP protocol. As such, most of the web application
security risks are just as relevant for APIs. Additionally, APIs introduce other security challenges mostly around
access control as the APIs may be served independently and not only as a whole set of web application resources.

APIs submit and retrieve data and may expose application logic and potentially sensitive data. As a result, they
have increasingly become a target for attackers trying to find easier ways into applications.

THREAT RISK PROTECTIONS/CONTROLS

Bot attacks � Account Takeover
 � (credential stuffing/

cracking)
 � Scraping/data exfiltration
 � Fraud

 � Apply dedicated machine learning on API calls as well as
HTTP traffic to detect suspicious behaviors of
sophisticated bots

 � Quota Management - Limiting the number of calls allowed per
source for each API. It is an important protection against
service abuse (for informational APIs), ATO attacks and
denial-of-service (DOS) attacks

API transaction
manipulations

Confidentiality and integrity
of data in transit

TLS is required to secure the communications between the
client and APIs for transport confidentiality and integrity of
data in transit

TCP protocol attacks
and evasion
techniques

TCP packet replay, TCP
packet fragmentation and
TCP packet reordering

Once the evasion attempt or the protocol manipulation is
detected, an immediate TCP Termination should be initiated

HTTP protocol attacks
and evasion
techniques

Manipulation of HTTP
headers (for instance, a
content-type header that is
not aligned with the content
sent in the body, etc.)

 � HTTP protocol parsing and enforcement of HTTP RFC
protects against various HTTP attacks such as NULL byte
injection, encoded attacks, HRS attacks, content-type
mismatch, etc.

 � Traffic normalization for evasion attacks detection. Peacetime
patterns should be used as a reference as encoded attacks
can easily bypass security solutions

 � Message size policy enforcement on HTTP messages, body,
headers and JSON/XML element sizes secures the application
against buffer overflow attacks, resource exhaustion and other
availability attacks on API infrastructure

POSTed JSONs and
XMLs injections

May eventually reach
databases, leading to
injections

 � Strong Typing and the Positive Security model provide tight
protection of API infrastructures. It is impossible to generate
most of the attacks if, for example, the only allowed value
type in the JSON element is an integer with the value range
of 1–100

 � XML/JSON validity check and Schema Validation is extremely
important security protection. Types, value ranges, sizes and
order of XML elements must be configurable

 � SQL and no-SQL injection protections through sanitizing and
validating user inputs and rule-based attack detection

7RADWARE WEB AND API SECURITY

THREAT RISK PROTECTIONS/CONTROLS

Insecure direct object
references

Manipulation of state
information in parameter
value that stores the account
number may allow access to
unexpected data

 � Session and field protections against manipulation.
 � Input validation in post transactions to detect injections

of references

Unvalidated redirects External entity embedding
malicious content in the
service or application

Validation of user inputs for external domains in parameters and
submitted forms and form fields

Data leakage Credit cards, social security
numbers, passwords or other
sensitive data may leak
through the API response
and 500 error messages may
leak architecture information
exposing server and data-
storing types

Data leak protection ensures error messages and sensitive
information is not leaking to the potential attacker. Data
structures and schemes of private information should be
recognized and guarded

Access violations and
abuse of APIs

Unexpected users may
invoke APIs they should not
have access to or perform
operations they should not
be allowed (e.g., delete a
license vs. just generating a
license)

Access Control policy management with:
 � IP-based and geo-location restrictions when relevant
 � Access restriction to APIs where, for example, should expose

some APIs for public access while others are just for
internal use

 � Access restrictions to specific HTTP methods where the set of
operations that are allowed for some users is restricted for
others. For example, a user can generate a license but cannot
delete the license once generated

DOM XSS An API client-side
vulnerability that may lead to
additional attack vectors

XSS protection based on rules and signatures of known attack
patterns. These rules and signatures must be continuously
reviewed and updated

Session management
attack

Session hijacking and
privilege escalation attacks

Session management protection of the API key, which is posted
as a body argument or in the cookie

Buffer overflow and
XML bombs

Large JSON/XML element
values can affect
performance, resource
consumption and service
availability

 � Strong typing and a positive security model provide tight
protection to API infrastructure. It will be impossible to
generate most of the attacks if the only allowed value type in
the JSON element is an integer with the value range of 1 – 100

 � XML/JSON validity check and schema validation is extremely
important security protection. Types, value ranges, sizes and
order of XML elements must be configurable

DDoS attacks � Network and application-
based DDoS attacks

 � Distributed Denial of
Service (DDoS)

DDoS protection – Attacks against applications can come en
masse, looking to disrupt services or retrieve database access.
Some attacks focus on rendering the web application layer
unreachable, causing a denial-of-service state. One HTTP
request can lead the server to execute a large number of internal
requests. Multiple requests can consume all its resources. There
are few techniques to do that, including randomizing URLs, API
keys and bypassing the application caching.

8RADWARE WEB AND API SECURITY

 Designing a Secured API Environment
Inline API Security Measures
Web application firewalls (WAFs) and API gateways are the two primary inline security tools for API
protections. While API gateways usually offer authentication and authorization features, their HTTP traffic and
payload analysis, as well as their OWASP Top 10 API security risks and web protection offering is either
limited or absent.

On the other hand, most WAFs do not understand the differences between APIs and regular web applications,
even when both may use the HTTP RFC as a baseline. The obvious example is the HTTP method used in
REST APIs. While it is extremely unlikely for a web application to accept HTTP requests with the DELETE
HTTP method, it is a common practice with REST API call to support this method and other potentially risky
methods for web applications such as PUT.

It is imperative that security measures be applied to enforce security policy on documented and
undocumented APIs.

Suspicious Behaviors and Violation Indicators
To secure APIs, a security solution must first discover the undocumented APIs and use OpenAPI/Swagger
schema definitions for documented APIs to enumerate the API endpoints (referred to as “paths” in OpenAPI)
to be secured and then enforce the appropriate measures, blocking API calls that attempt any of the following
violation indicators:

	Ð Accessing restricted APIs

	Ð Using non-defined/non-allowed HTTP methods for an API endpoint

	Ð Containing unrecognized and non-valid parameters

	Ð Containing out-of-expected-range parameter values

	Ð Embedding web attacks in JSON payloads or parameters

	Ð Excessively utilizing the APIs

	Ð Extracting sensitive data through the API

	Ð Attempting to take advantage of API vulnerabilities

	Ð Attempting to break the API authentication process through an account takeover (ATO) attack

9RADWARE WEB AND API SECURITY

Radware API Security Technology
By combining positive and negative security models, Radware secures APIs from known and zero-day attacks
as part of its flexible and scalable web application security solution and is recommended by NSS Labs and ICSA
Labs across on-premise, cloud, virtual, stand-alone or integrated and inline and out-of-path deployments.

	Ð Positive security model defines the allowed actions while blocking all access attempts to non-listed API
endpoints/paths. API catalog and schema validation are great examples of a positive security model. The
value of such an approach is a tighter, more effective security policy. The benefit of using an OpenAPI for
security is the ability to define a positive security model immediately, without any learning process to
effectively secure the APIs.

	Ð Negative security model defines the prohibited actions based on signatures and rules of known types of
attacks, while API calls without a match to the negative model are allowed. The value of such an approach is
not being dependent on an API structure and protecting against known web and API vulnerabilities and
weaknesses.

Beyond all the required protections discussed above, including SQL injection, broken authentication, XSS,
CSRF, DDoS, etc., Radware’s web application security technology features additional attack correlation
capabilities, which allows blocking of repetitive attack sources by managing a penalty score for security
violations per source. Once an attack source reaches a predefined score threshold, it will be blocked.

Denial of Service
36%

Protocol Attacks
30%

Access Violations
38%

Irregular Expressions

Most Common Attacks Against APIs

33%

Figure 4: Most common attacks against APIs – Radware Application Security Study

10RADWARE WEB AND API SECURITY

About Radware
Radware® (NASDAQ: RDWR) is a global leader of cybersecurity and application delivery solutions for physical, cloud and
software-defined data centers. Its award-winning solutions portfolio secures the digital experience by providing infrastructure,
application and corporate IT protection and availability services to enterprises globally. Radware’s solutions empower more than
12,500 enterprise and carrier customers worldwide to adapt quickly to market challenges, maintain business continuity and
achieve maximum productivity while keeping costs down. For more information, please visit www.radware.com.

Radware encourages you to join our community and follow us on: Radware Blog, LinkedIn, Facebook, Twitter, SlideShare,
YouTube, Radware Connect app for iPhone® and our security center DDoSWarriors.com that provides a comprehensive
analysis of DDoS attack tools, trends and threats.

© 2021 Radware Ltd. All rights reserved. The Radware products and solutions mentioned in this ebook are protected by trademarks, patents and pending patent
applications of Radware in the U.S. and other countries. For more details, please see: https://www.radware.com/LegalNotice/. All other trademarks and names are
property of their respective owners.

Radware introduces a unique auto policy generation mechanism to reduce the complexity of keeping evolving
environments secure. Advanced machine learning algorithms learn XML. JSON structures and schemas are
used for enforcement as part of the validation phase and create a security policy based on results. Moreover,
these algorithms are able to track changes in the application and perform automatic updates in real-time,
producing an adaptive security model.

Radware Bot Manager features purpose-built, intent-based deep behavioral analysis (IDBA) of bot traffic to
secure APIs from bad bots attempting to break into user accounts and steal sensitive information. Among
various factors, the detection engine uses a deterministic rule engine, integrity checks and collective intelligence
to understand the API invocation context and flow control (including authentication flow), thus preventing data
leakage due to account takeover attacks. It also features a software developers kit (SDK) with innovative unique
source identification capability to fingerprint to machine communication.

Questions: Tell us more or give us a call at
877.524.1419 to reach a sales professional.

https://www.radware.com/solutions/security/
https://www.radware.com/products/load-balancing-application-delivery/
http://www.radware.com
https://blog.radware.com/
https://www.linkedin.com/company/165642
https://www.facebook.com/Radware
https://twitter.com/radware
https://www.slideshare.net/Radware
http://www.youtube.com/radwareinc
https://itunes.apple.com/us/app/radware-connect/id391124100?mt=8
https://security.radware.com/
https://www.radware.com/LegalNotice/

