main

Application SecurityAttack MitigationDDoS AttacksSecurityWAF

Protecting Applications in a Serverless Architecture

November 8, 2018 — by Ben Zilberman0

Serverless-960x640.jpg

Serverless architectures are revolutionizing the way organizations procure and use enterprise technology. Until recently, information security architecture was relatively simple; you built a fortress around a server containing sensitive data, and deployed security solutions to control the flow of users accessing and leaving that server.

But how do you secure a server-less environment?

The Basics of Serverless Architecture

Serverless architecture is an emerging trend in cloud-hosted environments and refers to applications that significantly depend on third-party services (known as Backend-as-a-Service or “BaaS”) or on custom code that’s run in ephemeral containers (known as Function-as-a-Service or “FaaS”). And it is significantly more cost effective than buying or renting servers.

The rapid adoption of micro-efficiency-based pricing models (a.k.a PPU, or pay-per-use) pushes public cloud providers to introduce a business model that meets this requirement. Serverless computing helps providers optimize that model by dynamically managing the allocation of machine resources. As a result, organizations pay based on the actual amount of resources their applications consume, rather than ponying up for pre-purchased units of workload capacity (which is usually higher than what they utilize in reality).

What’s more, going serverless also frees developers and operators from the burdens of provisioning the cloud workload and infrastructure. There is no need to deploy operating systems and patch them, no need to install and configure web servers, and no need to set up or tune auto-scaling policies and systems.

[You may also like: Application Delivery and Application Security Should be Combined]

Security Implications of Going Serverless

The new serverless model coerces a complete change in architecture – nano services of a lot of software ‘particles.’ The operational unit is set of function containers that execute REST API functions, which are invoked upon a relevant client-side event. These function instances are created, run and then terminated. During their run time, they receive, modify and send information that organizations want to monitor and protect. The protection should be dynamic and swift:

  • There is no perimeter or OS to secure
  • Agents and a persistent footprint become redundant.
  • To optimize the business model, the solution must be scalable and ephemeral automation is the key to success

If we break down our application into components that run in a serverless model, the server that runs the APIs uses different layers of code to parse the requests, essentially enlarging the attack surface. However, this isn’t an enterprise problem anymore; it’s the cloud provider’s. Unfortunately, even they sometimes lag in patch management and hardening workloads. Will your DevOps read all of the cloud provider documentation in details?  Most likely, they’ll go with generic permissions. If you want to do something right, you better do it yourself.

Serverless computing doesn’t eradicate all traditional security concerns. Application-level vulnerabilities can still be exploited—with attacks carried out by human hackers or bots—whether they are inherent in the FaaS infrastructure or in the developer function code.

When using a FaaS model, the lack of local persistent storage encourages data transfer between the function and the different persistent storage services (e.g., S3 and DynamoDB by AWS) instead. Additionally, each function eventually processes data received from storage, the client application or from a different function. Every time it’s moved, it becomes vulnerable to leakage or tampering.

In such an environment, it is impossible to track all potential and actual security events. One can’t follow each function’s operation to prevent it from accessing wrong resources. Visibility and forensics must be automated and perform real time contextual analysis. But the question is not whether to use serverless or not because it is more in/secure. Rather, the question is how to do it when your organization goes there.

[You may also like: Web Application Security in a Digitally Connected World]

A New Approach

Simply put, going serverless requires a completely different security approach—one that is dynamic, elastic, and real-time. The security components must be able to move around at the same pace as the applications, functions and data they protect.

First thing’s first: To help avoid code exploitation (which is what attacks boil down to), use encryption and monitor the function’s activity and data access so it has, by default, minimum permissions. Abnormal function behavior, such as expected access to data or non-reasonable traffic flow, must be analyzed.

Next, consider additional measures, like a web application firewall (WAF), to secure your APIs. While an API gateway can manage authentication and enforce JSON and XML validity checks, not all API gateways support schema and structure validation, nor do they provide full coverage of OWASP top 10 vulnerabilities like a WAF does. WAFs apply dozens of protection measures on both inbound and outbound traffic, which is parsed to detect protocol manipulations. Client-side inputs are validated and thousands of rules are applied to detect various injections attacks, XSS attacks, remote file inclusion, direct object references and many more.

[You may also like: Taking Stock of Application-Layer Security Threats]

In addition to detecting known attacks, for the purposes of zero-day attack protection and comprehensive application security, a high-end WAF allows strict policy enforcement where each function can have its own parameters white listed—the recommended approach when deploying a function processing sensitive data or mission-critical business logic.

And—this is critical—continue to mitigate for DDoS attacks. Going serverless does not eliminate the potential for falling susceptible to these attacks, which have changed dramatically over the past few years. Make no mistake: With the growing online availability of attack tools and services, the pool of possible attacks is larger than ever.

Read “Radware’s 2018 Web Application Security Report” to learn more.

Download Now

Application SecurityAttack MitigationSecurityWeb Application Firewall

Are Your Applications Secure?

October 3, 2018 — by Ben Zilberman7

WAF_REPORT_BLOG_Cover_img-960x715.jpg

Executives express mixed feelings and a surprisingly high level of confidence in Radware’s 2018 Web Application Security Report. 

As we close out a year of headline-grabbing data breaches (British Airways, Under Armor, Panera Bread), the introduction of GDPR and the emergence of new application development architectures and frameworks, Radware examined the state of application security in its latest report. This global survey among executives and IT professionals yielded insights about threats, concerns and application security strategies.

The common trend among a variety of application security challenges including data breaches, bot management, DDoS mitigation, API security and DevSecOps, was the high level of confidence reported by those surveyed. 90% of all respondents across regions reported confidence that their security model is effective at mitigating web application attacks.

Attacks against applications are at a record high and sensitive data is shared more than ever. So how can execs and IT pros have such confidence in the security of their applications?

To get a better understanding, we researched the current threat landscape and application protection strategies organizations currently take. Contradicting evidence stood out immediately:

  • 90% suffered attacks against their applications
  • One in three shared sensitive data with third parties
  • 33% allowed third parties to create/modify/delete data via APIs
  • 67% believed a hacker can penetrate their network
  • 89% saw web-scraping as a significant threat to their IP
  • 83% run bug bounty programs to find vulnerabilities they miss

There were quite a few threats to application services that were not properly addressed, challenging traditional security approaches. In parallel, the adoption of emerging frameworks and architectures, which rely on numerous integrations with multiple services, adds more complexity and increases the attack surface.

Current Threat Landscape

Last November, OWASP released a new list of top 10 vulnerabilities in web applications. Hackers continue to use injections, XSS, and a few old techniques such as CSRF, RFI/LFI and session hijacking to exploit these vulnerabilities and gain unauthorized access to sensitive information. Protection is becoming more complex as attacks come through trusted sources such as a CDN, encrypted traffic, or APIs of systems and services we integrate with. Bots behave like real users and bypass challenges such as CAPTCHA, IP-based detection and others, making it even harder to secure and optimize the user experience.

[You might also like: WAFs Should Do A  Lot More Against Current Threats Than Covering OWASP Top 10]

Web application security solutions must be smarter and address a broad spectrum of vulnerability exploitation scenarios. On top of protecting the application from these common vulnerabilities, it has to protect APIs and mitigate DoS attacks, manage bot traffic and make a distinction between legitimate bots (search engines for instance) and bad ones like botnets, web-scrapers and more.

DDoS Attacks

63% suffered a denial of service attack against their application. DoS attacks render applications inoperable by exhausting the application resources. Buffer overflow and HTTP floods were the most common types of DoS attacks, and this form of attack is more common in APAC. 36% find HTTP/Layer-7 DDoS as the most difficult attack to mitigate. Half of the organizations take rate-based approaches (such as limiting the number of request from a certain source or simply buying a rate-based DDoS protection solution) which are ineffective once the threshold is exceeded and real users can’t connect.

API Attacks

APIs simplify the architecture and delivery of application services and make digital interactions possible. Unfortunately, they also introduce a wide range of risks and vulnerabilities as a backdoor for hackers to break into networks. Through APIs, data is exchanged in HTTP where both parties receive, process and share information. A third party is theoretically able to insert, modify, delete and retrieve content from applications. This is nothing but an invitation to attack:

  • 62% of respondents did not encrypt data sent via API
  • 70% of respondents did not require authentication
  • 33% allowed third parties to perform actions (GET/ POST / PUT/ DELETE)

Attacks against APIs:

  • 39% Access violations
  • 32% Brute-force
  • 29% Irregular JSON/XML expressions
  • 38% Protocol attacks
  • 31% Denial of service
  • 29% Injections

Bot Attacks

The amount of both good and bad bot traffic is growing. Organizations are forced to increase network capacity and need to be able to precisely tell a friend from a foe so both customer experience and security are maintained. Surprisingly, 98% claimed they can make such a distinction. However, a similar amount sees web-scraping as a significant threat. 87% were impacted by such an attack over the past 12 months, despite a variety of methods companies use to overcome the challenge – CAPTCHA, in-session termination, IP-based detection or even buying a dedicated anti-bot solution.

Impact of Web-scraping:

  • 50% gathered pricing information
  • 43% copied website
  • 42% theft of intellectual property
  • 37% inventory queued/being held by bots
  • 34% inventory held
  • 26% inventory bought out

Data Breaches

Multinational organizations keep close tabs on what kinds of data they collect and share. However, almost every other business (46%) reports having suffered a breach. On average an organization suffers 16.5 breach attempts every year. Most (85%) take between hours and days to discover. Data breaches are the most difficult attack to detect, as well as mitigate, in the eyes of our survey respondents.

How do organizations discover data breaches?

  • 69% Anomaly detection tools/SIEM
  • 51% Darknet monitoring service
  • 45% Information was leaked publicly
  • 27% Ransom demand

IMPACT OF ATTACKS

Negative consequences such as loss of reputation, customer compensation, legal action (more common in EMEA), churn (more common in APAC), stock price drops (more common in AMER) and executives who lose their jobs are quick to follow a successful attack, while the process of repairing the damage of a company’s reputation is long and not always successful. About half admitted having encountered such consequences.

Securing Emerging Application Development Frameworks

The rapidly growing amount of applications and their distribution across multiple environments requires adjustments that lead to variations once a change to the application is needed. It is nearly impossible to deploy and maintain the same security policy efficiently across all environments. Our research shows that ~60% of all applications undergo changes on a weekly basis. How can the security team keep up?

While 93% of organizations use a web application firewall (WAF), only three in ten use a WAF that combines both positive and negative security models for effective application protection.

Technologies Used By DevOps

  • 63% – DevOps and Automation Tools
  • 48% – Containers (3 in 5 use Orchestration)
  • 44% – Serverless / FaaS
  • 37% – Microservers

Among the respondents that used micro-services, one-half rated data protection as the biggest challenge, followed by availability assurance, policy enforcement, authentication, and visibility.

Summary

Is there a notion that organizations are confident? Yes. Is that a false sense of security? Yes. Attacks are constantly evolving and security measures are not foolproof. Having application security tools and processes in place may provide a sense of control but they are likely to be breached or bypassed sooner or later. Another question we are left with is whether senior management is fully aware of the day to day incidents. Rightfully so, they look to their internal teams tasked with application security to manage the issue, but there seems to be a disconnect between their perceptions of the effectiveness of their organizations’ application security strategies and the actual exposure to risk.

Read “Radware’s 2018 Web Application Security Report” to learn more.

Download Now

SecurityWAF

WAFs Should Do A Lot More Against Current Threats Than Covering OWASP Top 10

July 12, 2018 — by Ben Zilberman0

owasp-top-10-960x640.jpg

Looking in the rearview mirror

The application threat landscape has rapidly evolved. For years, users consumed applications over the internet using the common tool – web browsers. At every point in time, there were 2-5 web browsers to support, and the variety of application development and testing frameworks was relatively limited. For instance, almost all databases were built using the SQL language. Unfortunately, not long before hackers began to abuse applications in order to steal, delete and modify data. They could take advantage of applications in different ways, primarily by tricking the application user, injecting or remotely executing code. Shortly after, commercialized solutions named Web Application Firewalls (WAF) emerged, and the community responded by creating the Open Web Application Security Project (OWASP) to set and maintain standards and methodologies for secure applications.

Security

Can Security Be Efficient Without Expertise or Intelligence?

April 12, 2018 — by Ben Zilberman0

managed-services-960x571.jpg

Threats evolve fast, don’t lag behind!

I recently returned from a business trip to an exotic destination, which is also a massive emerging market depending on how you look at it. The folks I’ve met do not seem to face other challenges than what you see in mature markets, but I could easily relate to the sheer interest of people to learn and adapt and act quickly. They were keen to get knowledge and use it, knowing that without it they may stay behind.

Suffering

In today’s threat landscape, if you aren’t able to react quickly enough, you will suffer.

Security

CAPTCHA Limitations of Bot Mitigation

March 15, 2018 — by Ben Zilberman1

captcha-960x633.jpg

An essential part of the technological evolution is creating systems, machines and applications that autonomously and independently create, collect and communicate data. This automation frees information technology folk to focus on other tasks. Currently, such bots generate more than half of the internet traffic, but unfortunately every evolution brings with it some form of abuse. Various ‘bad’ bots aim to achieve different goals, among which are web scraping, web application DDoS and clickjacking. While simple script-based bots are not much of a challenge to detect and block, advanced bots dramatically complicate the mitigation process using techniques such as mimicking user behavior, using dynamic IP addresses, operating behind anonymous proxies and CDNs, etc.

Captcha means “Completely Automated Public Turing Test to tell Computers and Humans Apart”.

Attack Types & VectorsDDoSSecurity

Has Cyber Security Reached Its Limits?

January 16, 2018 — by Ben Zilberman0

Hackermanstealinformation-1-960x576.jpg

Thoughts from Radware’s Global Application and Network Security Report

  • Rise of cryptocurrency trade and value boosts attacks;
  • Notorious attacks of the year point at the human factor to blame;
  • Machine-learning technologies are not fully mature nor broadly adopted;
  • Despite a notion of tolerance, in one of four cases customers will take action against a targeted organization;
  • IoT devices power more effective DDoS attacks, but nobody takes responsibility to patch the known holes;
  • Data Leakage is the number one concern of organizations today.

These are just a handful of insights from Radware’s 2017-2018 Global Application and Network Security Report, providing a comprehensive view of the industry trends and evolutions. 2017 was an eventful year, with global cyber-attack campaigns that grabbed headlines in mainstream media and affected the lives of many, in particular the WannaCry, NotPetya and BadRabbit ransom sprees, as well as Equifax and Forever 21 data leaks. Let’s take a closer look at 2017 trends and 2018 predictions:

Security

Understanding the Real Cost of a Cyber-Attack and Building a Cyber-Resilient Business

November 21, 2017 — by Ben Zilberman0

cost-cyber-attack-960x641.jpg

Cyber-attacks are like parasites: they are not always visible, not always felt, but with plenty of potential to affect your operational efficiencies, service level agreements, and computing resources. All of those impacts bring potentially high costs. The first step to understanding and managing the cost of cyber-attacks is to do everything you can to understand the potential impact and build an effective incident response team so you can rein in these “parasites” and limit damage to your business.

SecurityWAF

Web Application Security in a Digitally Connected World

November 14, 2017 — by Ben Zilberman0

web-application-security-research-960x608.jpg

Apps control our lives today. We pay our bills, do our shopping, communicate with our doctors, buy our groceries, order a taxi, and even order our lunch through ‘apps.’  If you can think of it, there is an app for it. And these apps live on our phones, our desktops, in web portals and even in our internal networks. However, all these apps create new and different types of security challenges for an organization’s network. The speed and complexity inherent in these technological advances expose application vulnerabilities, security risks and skills deficiencies that can compromise sensitive data, devalue the brand, and affect financial performance.